Skip to main content
Log in

Detecting gas seeps in Arctic water areas using remote sensing data

  • Remote Study of Oceanic Processes in Polar Regions
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We consider the specific features of remote registration of sources of natural hydrocarbon gas seeps in Arctic water areas to substantiate the possibility of aerospace monitoring of shelf zones prospective for hydrocarbons. The main characteristics of degassing sources and their manifestations at the surface and in the water column have been determined. The areas of the Arctic shelf with potential natural gas shows that can be detected through remote sensing have been identified. We analyze promising aerospace methods for the registration of gas shows in the sea and give examples of hydrocarbon gas seeps observed from space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerokosmicheskii monitoring obektov neftegazovogo kompleksa (Aerospace Monitoring of Objects of Oil and Gas Facilities), Bondur, V.G., Ed., Moscow: Nauchnyi mir, 2012.

    Google Scholar 

  • Andersen, C. Boetius, A., et al., Biodiversity of cold seep ecosystems along the European margins, Oceanography, 2009, vol. 22, pp. 119–135.

    Google Scholar 

  • Anfilatova, E.A., Analytical review of modern-day foreign data on the problem of gas hydrate propagation in the world water basins, Neftegazov. Geol. Teor. Prakt., 2008, no. 3, pp. 1–8.

    Google Scholar 

  • Bogoyavlenskii, V.I., Prospects and problems in the exploration of oil and gas fields on the Russian Arctic shelf, Buren. Neft, 2012, no. 11, pp. 4–10.

    Google Scholar 

  • Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Ocean. Phys., 2011a, vol. 47, no. 9, pp. 1007–1018.

    Article  Google Scholar 

  • Bondur, V.G., Aerospace methods in modern oceanology, in Novye idei v okeanologii: Fizika. Khimiya. Biologiya (New Ideas in Oceanology: Physics, Chemistry, and Biology), Moscow: Nauka, 2004, pp. 55–117.

    Google Scholar 

  • Bondur, V.G., Aerospace monitoring of oil and gas areas and industrial units: Realities and prospects, in Aerokosmicheskii monitoring obektov neftegazovogo kompleksa (Aerospace Monitoring of Objects of Oil and Gas Facilities), Bondur, V.G., Ed., Moscow: Nauchnyi mir, 2012, pp. 15–37.

    Google Scholar 

  • Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852. doi 10.1134/S0001433814090060

    Article  Google Scholar 

  • Bondur, V.G., Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas, in Waste Water—Evaluation and Management, InTech, Croatia, 2011b, pp. 155–180.

    Google Scholar 

  • http://www.intechopen. com/articles/show/title/satellite-monitoring-and-mathe matical-modelling-of-deep-runoff-turbulent-jets-in-coa stal-water-areas.

  • Bondur, V.G. and Grebenyuk, Yu.V., Remote indication of anthropogenic influence on marine environment caused by depth wastewater plume: Modeling, experiments, Issled. Zemli Kosmosa, 2001, no. 6, pp. 49–67.

    Google Scholar 

  • Bondur, V.G., Keeler, R.N., Starchenkov, S.A., and Rybakova, N.I., Monitoring of the pollution of the ocean coastal water areas using space multispectral high resolution imagery, Issled. Zemli Kosmosa, 2006a, no. 6, pp. 42–49.

    Google Scholar 

  • Bondur, V.G. and Kuznetsova, T.V., Study of natural oil and gas shows on the sea surface using space imagery, in Aerokosmicheskii monitoring obektov neftegazovogo kompleksa (Aerospace Monitoring of Objects of Oil and Gas Facilities), Bondur, V.G., Ed., Moscow: Nauchnyi mir, 2012, pp. 272–287.

    Google Scholar 

  • Bondur, V.G., Zhurbas, V.M., and Grebenyuk Yu.V., Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins, Oceanology (Engl. Transl.), 2006b, vol. 46, no. 6, pp. 757–771.

    Article  Google Scholar 

  • Bondur, V.G. and Zubkov, E.V., Showing up the small-scale ocean upper layer optical inhomogeneities by the multispectral space images with the high surface resolution. Part 1. The canals and channels drainage effects at the coastal zone, Issled. Zemli Kosmosa, 2005, no. 4, pp. 54–61.

    Google Scholar 

  • Fedorov, P.I., Flerov, G.B., and Golovin, D.I., New data on age and composition of volcanics in Bennett Island (East Arctic), Dokl. Earth Sci., 2005, vol. 401, no. 2, pp. 187–191.

    Google Scholar 

  • Hovland, M., Judd, A.G., and Burke, P.A., The global flux of methane from shallow submarine sediments, Chemosphere, 1993, vol. 26, pp. 559–578.

    Article  Google Scholar 

  • Ivanov, A.Yu., Slick and film formations on space radar images, Issled. Zemli Kosmosa, 2007, no. 3, pp. 73–96.

    Google Scholar 

  • Judd, A. and Hovland, M., Seabed Fluid Flow. The Impact on Geology, Biology and the Marine Environment, Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

  • Kaul, N., Foncher, Y.-P., and Heesemann, M., Estimating mud expulsion rates from temperature measurements on Haakon Mosby Mud Volcano, SW Barents Sea, Mar. Geol., 2006, vol. 229, pp. 1–14.

    Article  Google Scholar 

  • Kennicut, M.C., Brooks, J.M., Bidigare, R.J.R., et al., Vent type taxa in a hydrocarbon seep region on the Louisiana slope, Nature, 1985, vol. 317, pp. 351–353.

    Article  Google Scholar 

  • Kienle, J., Roederer, J.G., and Shaw, G.E., Volcanic event in Soviet Arctic, EOS, 1983, vol. 64, no. 20, p. 377.

    Article  Google Scholar 

  • Lastochkin, A.N. and Naryshkin, G.D., New notions on the bottom relief of the Arctic Ocean, Okeanologiya, 1989, vol. 29, no. 6, pp. 968–973.

    Google Scholar 

  • Lavrova, O.Yu., Kostyanoi, A.G., Lebedev, S.A., Mityagina, M.I., Ginzburg, A.I., and Sheremet, N.A., Kompleksnyi sputnikovyi monitoring morei Rossii (Comprehensive Satellite Monitoring of Russian Seas), Moscow: IKI RAN, 2011.

    Google Scholar 

  • Lein, A.Yu., Pimenov, N.V., Savvichev, A.S., Pavlova, G.L., Rusanov, I.M., Miller, Yu.M., and Ivanov, M.V., Geochemical features of the diagenesis of the Holocene deposits in the area of the Spitsbergen Archipelago, Oceanology (Engl. Transl.), 2000, vol. 40, no. 2, pp. 228–236.

    Google Scholar 

  • Lein, A.Yu. and Ivanov, M.V., Biokhimicheskii tsikl metana v okeane (Biochemical Cycle of Methane in the Ocean), Moscow: Nauka, 2009.

    Google Scholar 

  • Lein, A.Yu. and Ivanov, M.V., Biochemical cycle of methane in the ocean, Priroda (Moscow, Russ. Fed.), 2010, no. 2, pp. 12–21.

    Google Scholar 

  • Lyushvin, P.V., Methanotrophic ice melting, Elektron. Nauch. Izd. Al’manakh Prostranstvo Vremya, 2013, vol. 2, no. 2.

    Google Scholar 

  • Masurenkov, Yu.P., Sobisevich, A.L., Slezin, Yu.B., and Shuvalov, R.A., Gazovye shleify u ostrova Benetta, Izv. Akad. Nauk: Ser. Geogr., 2013, no. 3, pp. 86–95.

    Google Scholar 

  • Mazzini, A., Ivanov, M.K., Parnell, J., Stadnitskaya, A., Cronin, B.T., Poludetkina, E., Masurenko, L., and van Weering, T.C.E., Methane-related authigenic carbonates from the Black Sea geochemical characterization and relation to seeping fluids, Mar. Geol., 2004, vol. 212, pp. 153–181.

    Article  Google Scholar 

  • Ogai, E.K., Urazaeva, S.B., and Petrovskii, V.B., New prospects and directions of oil and gas activities using the modern technologies of remote sensing of the Earth, Geol. Okhrana Nedr, 2007, no. 3, pp. 82–89.

    Google Scholar 

  • Optika okeana. T.1. Fizicheskaya optika okeana (Ocean Optics. Vol. 1: Physical Optics of the Ocean), Monin, A.S., Ed., Moscow: Nauka, 1983.

    Google Scholar 

  • Sergienko, V.I., Lobkovskii, L.I., Shakhova, N.E., Romanovskii, N.N., Grigor’ev, M.N., Semiletov, I.P., Dudarev, O.V., Koshurnikov, A.V., Samarkin, V.A., Tumskoi, V.E., Charkin, A.N., and Chuvilin, E.M., Combined biogeochemical, geologica, and geophysical studies in the River Lena–Laptev Sea system, in Seminar on Problems of the Evolution of Natural Environment in the Arctic Zone, May 11, 2012.

    Google Scholar 

  • Shakhova, N.E., Sergienko, V.I., and Semiletov, I.P., The contribution of the East Siberian shelf to the modern methane cycle, Herald Russ. Acad. Sci., 2009, vol. 79, no. 3, pp. 237–246.

    Article  Google Scholar 

  • Shnyukov, E.V., Problems, methods, and peculiarities in studies of the World Ocean, G³droakustich. Zh., 2009, no. 6, pp. 42–55.

    Google Scholar 

  • Vinogradov, V.A., Gusev, E.A., and Lopatin, B.G., The age and structure of the sedimentary sheath of the Russian eastern Arctic shelf, Geologo–geofizicheskie kharakteristiki litosfery Arkticheskogo regiona, 2004, no. 5, pp. 202–212.

    Google Scholar 

  • Vogt, P.R., Cherkashev, G., Ginsburg, G., et al., Haakon Mosby mud volcano provides unusual example of venting, EOS, 1997, vol. 78, no. 48, pp. 549–557.

    Article  Google Scholar 

  • Yusupov, V.A., Salyuk, A.N., Karnaukh, V.N., Semiletov, I.P., and Shakhova, N.E., Detection of methane ebullition in shelf waters of the Laptev Sea in the eastern Arctic region, Dokl. Ross. Akad. Nauk, 2010, vol. 430, no. 6, pp. 820–823.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Original Russian Text © V.G. Bondur, T.V. Kuznetsova, 2015, published in Issledovanie Zemli iz Kosmosa, 2015, No. 4, pp. 30–43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Kuznetsova, T.V. Detecting gas seeps in Arctic water areas using remote sensing data. Izv. Atmos. Ocean. Phys. 51, 1060–1072 (2015). https://doi.org/10.1134/S0001433815090066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815090066

Keywords

Navigation