Abstract
The results of 2-year (2010–2012) measurements of the concentrations of organic carbon (OC) and elemental carbon (EC), which were taken at the Zotino Tall Tower Observatory (ZOTTO) Siberian background station (61° N, 89° E), are given. Despite the fact that this station is located far from populated areas and industrial zones, the concentrations of OC and EC in the atmosphere over boreal forests in central Siberia significantly exceed their background values. In winter and fall, high concentrations of atmospheric carbonaceous aerosol particles are caused by the long-range transport (~1000 km) of air masses that accumulate pollutants from large cities located in both southern and southwestern regions of Siberia. In spring and summer, the pollution level is also high due to regional forest fires and agricultural burning in the steppe zone of western Siberia in the Russian–Kazakh border region. Background concentrations of carbonaceous aerosol particles were observed within relatively short time intervals whose total duration was no more than 20% of the entire observation period. In summer, variations in the background concentrations of OC closely correlated with air temperature, which implies that the biogenic sources of organic-particle formation are dominating.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
K. Ya. Kondrat’ev, “Aerosol and climate: Some results and prospects of remote sensing. 2. Tropospheric aerosol,” Ekol. Khim. 7 (3), 145–163 (1998).
M. Kulmala, T. Suni, K. E. J. Lehtinen, et al., “A new feedback mechanism linking forests, aerosols, and climate,” Atmos. Chem. Phys. 4 (1), 557–562 (2004).
J. Winderlich, H. Chen, C. Gerbig, et al., “Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia,” Atmos. Meas. Tech. 3, 1113–1128 (2010).
K. S. Carslaw, L. A. Lee, C. L. Reddington, et al., “Large contribution of natural aerosols to uncertainty in indirect forcing,” Nature 503 (7), 67–71 (2013).
M. O. Andreae, “Aerosols before pollution,” Science 315, 50–51 (2007).
C. Hoose, J. E. Kristjansson, T. Iversen, et al., “Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect,” Geophys. Res. Lett. 36 (L12807), 1–5 (2009).
T. Kurten, M. Kulmala, M. Dal Maso, et al., “Estimation of different forest-related contributions to the radiative balance using observations in southern Finland,” Boreal Environ. Res. 8, 275–285 (2003).
A. Hoffer, A. Gelencsér, M. Blazsó, et al., “Daily and seasonal variations in the chemical composition of biomass burning aerosol,” Atmos. Chem. Phys. 6 (3), 3505–3515 (2006).
M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., “Organic aerosol and global climate modeling: A review,” Atmos. Chem. Phys. 5 (4), 1053–1123 (2005).
M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochem. Cycles 15 (4), 955–966 (2001).
M. Halguist, J. C. Wenger, U. Baltensperger, et al., “The formation, properties and impact of secondary organic aerosol: Current and emerging issues,” Atmos. Chem. Phys. 9 (14), 5155–5236 (2009).
S. Fuzzi, M. O. Andreae, B. J. Huebert, et al., “Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change,” Atmos. Chem. Phys. 6 (7), 2017–2038 (2006).
G. Adler, J. M. Flores, A. Abo Riziq, et al., “Chemical, physical, and optical evolution of biomass burning aerosols: A case study,” Atmos. Chem. Phys. 11 (4), 1491–1503 (2011).
M. O. Andreae and D. Rosenfeld, “Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols,” Earth-Sci. Rev. 89, 13–41 (2008).
S. J. Smith and T. C. Bond, “Two hundred fifty years of aerosols and climate: The end of the age of aerosols,” Atmos. Chem. Phys. 14 (2), 537–549 (2014).
V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).
R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, et al., “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Oceanic Opt. 27 (3), 275–282 (2014).
S. Kuokka, K. Teinilä, K. Saarnio, et al., “Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok,” Atmos. Chem. Phys. 7 (18), 4793–4805 (2007).
http://irkipedia.ru/content/klimat_baykala_bibliografiya_aerozoli_i_matematicheskoe_modelirovanie_atmosfernyh_processov.
A. S. Safatov, G. A. Buryak, S. E. Ol’kin, et al., “Analysis of monitoring data on organic/elemental carbon and total protein in ground air layer aerosol in the south of Western Siberia,” Opt. Atmos. Okeana 27 (2), 164–168 (2014).
J. Heintzenberg, W. Birmili, R. Otto, et al., “Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009,” Atmos. Chem. Phys. 11 (3), 8703–8719 (2011).
X. Chi, J. Winderlich, J. C. Mayer, et al., “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13 (24), 12271–12298 (2013).
W. Birmili, K. Stopfkuchen, M. Herman, et al., “Particle penetration through a 300 m inlet pipe for sampling atmospheric aerosols from a tall meteorological tower,” Aerosol Sci. Technol. 41, 811–817 (2007).
W. Maenhaut and M. Claeys, Characterisation and Sources of Carbonaceous Atmospheric Aerosols (Belgian Sci. Policy, Brussels, 2007).
M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosol Sci. Technol. 25 (3), 221–241 (1996).
B. Turpin and H. J. Lim, “Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass,” Aerosol Sci. Technol. 35, 602–610 (2001).
W. Maenhaut, S. Nava, F. Lucarelli, et al., “Chemical composition, impact from biomass burning, and mass closure for PM(2.5) and PM(10) aerosols at Hyytiala, Finland, in summer 2007,” X-Ray Spectrom. 40, 168–171 (2011). doi 10.1002/Xrs.1302
W. Maenhaut, N. Raes, X. Chi, et al., “Chemical composition and mass closure for PM2.5 and PM10 aerosols at K-puszta, Hungary, in summer 2006,” X-Ray Spectrom. 37, 193–197 (2008). doi 10.1002/xrs.1062
J. C. Lin, C. Gerbig, S. C. Wofsy, et al., “A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model,” J. Geophys. Res. 108 (D16), 4493 (2003). doi 10.1029/2002jd003161
R. R. Draxler and G. D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (2013). http://www.arl.noaa.gov/HYSPLIT.php.
L. Giglioa, J. Descloitresa, C. O. Justicec, et al., “An enhanced contextual fire detection algorithm for MODIS,” Remote Sens. Environ. 87, 273–282 (2003).
J. Williams, J. Crowley, H. Fischer, et al., “The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): An overview of meteorological and chemical influences,” Atmos. Chem. Phys. 11 (20), 10599–10618 (2011).
P. Tunved, H. C. Hansson, V. M. Kerminen, et al., “High natural aerosol loading over boreal forests,” Science 312, 261–263 (2006).
W. R. Leaitch, A. M. Macdonald, P. C. Brickell, et al., “Temperature response of the submicron organic aerosol from temperate forests,” Atmos. Environ. 45, 6696–6704 (2011).
Y. Zhang, D. Obrist, B. Zielinka, and A. Gertler, “Particulate emissions from different type of biomass burning,” Atmos. Environ. 72, 27–35 (2013).
P. Hari and M. Kulmala, “Station for measuring ecosystem-atmosphere relations (SMEAR II),” Boreal Environ. Res. 10, 315–322 (2005).
W. Maenhaut, W. Wang, and X. Chi, “Semivolatile behavior and filter sampling artifacts for dicarboxylic acids during summer campaigns at three forested sites in Europe,” Boreal Environ. Res. 16, 273–287 (2011).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © E.F. Mikhailov, S.Yu. Mironova, M.V. Makarova, S.S. Vlasenko, T.I. Ryshkevich, A.V. Panov, M.O. Andreae, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 4, pp. 484–492.
Rights and permissions
About this article
Cite this article
Mikhailov, E.F., Mironova, S.Y., Makarova, M.V. et al. Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over central Siberia. Izv. Atmos. Ocean. Phys. 51, 423–430 (2015). https://doi.org/10.1134/S000143381504009X
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000143381504009X