Skip to main content
Log in

Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over central Siberia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of 2-year (2010–2012) measurements of the concentrations of organic carbon (OC) and elemental carbon (EC), which were taken at the Zotino Tall Tower Observatory (ZOTTO) Siberian background station (61° N, 89° E), are given. Despite the fact that this station is located far from populated areas and industrial zones, the concentrations of OC and EC in the atmosphere over boreal forests in central Siberia significantly exceed their background values. In winter and fall, high concentrations of atmospheric carbonaceous aerosol particles are caused by the long-range transport (~1000 km) of air masses that accumulate pollutants from large cities located in both southern and southwestern regions of Siberia. In spring and summer, the pollution level is also high due to regional forest fires and agricultural burning in the steppe zone of western Siberia in the Russian–Kazakh border region. Background concentrations of carbonaceous aerosol particles were observed within relatively short time intervals whose total duration was no more than 20% of the entire observation period. In summer, variations in the background concentrations of OC closely correlated with air temperature, which implies that the biogenic sources of organic-particle formation are dominating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. K. Ya. Kondrat’ev, “Aerosol and climate: Some results and prospects of remote sensing. 2. Tropospheric aerosol,” Ekol. Khim. 7 (3), 145–163 (1998).

    Google Scholar 

  2. M. Kulmala, T. Suni, K. E. J. Lehtinen, et al., “A new feedback mechanism linking forests, aerosols, and climate,” Atmos. Chem. Phys. 4 (1), 557–562 (2004).

    Article  Google Scholar 

  3. J. Winderlich, H. Chen, C. Gerbig, et al., “Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia,” Atmos. Meas. Tech. 3, 1113–1128 (2010).

    Article  Google Scholar 

  4. K. S. Carslaw, L. A. Lee, C. L. Reddington, et al., “Large contribution of natural aerosols to uncertainty in indirect forcing,” Nature 503 (7), 67–71 (2013).

    Article  Google Scholar 

  5. M. O. Andreae, “Aerosols before pollution,” Science 315, 50–51 (2007).

    Article  Google Scholar 

  6. C. Hoose, J. E. Kristjansson, T. Iversen, et al., “Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect,” Geophys. Res. Lett. 36 (L12807), 1–5 (2009).

    Article  Google Scholar 

  7. T. Kurten, M. Kulmala, M. Dal Maso, et al., “Estimation of different forest-related contributions to the radiative balance using observations in southern Finland,” Boreal Environ. Res. 8, 275–285 (2003).

    Google Scholar 

  8. A. Hoffer, A. Gelencsér, M. Blazsó, et al., “Daily and seasonal variations in the chemical composition of biomass burning aerosol,” Atmos. Chem. Phys. 6 (3), 3505–3515 (2006).

    Article  Google Scholar 

  9. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., “Organic aerosol and global climate modeling: A review,” Atmos. Chem. Phys. 5 (4), 1053–1123 (2005).

    Article  Google Scholar 

  10. M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochem. Cycles 15 (4), 955–966 (2001).

    Article  Google Scholar 

  11. M. Halguist, J. C. Wenger, U. Baltensperger, et al., “The formation, properties and impact of secondary organic aerosol: Current and emerging issues,” Atmos. Chem. Phys. 9 (14), 5155–5236 (2009).

    Article  Google Scholar 

  12. S. Fuzzi, M. O. Andreae, B. J. Huebert, et al., “Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change,” Atmos. Chem. Phys. 6 (7), 2017–2038 (2006).

    Article  Google Scholar 

  13. G. Adler, J. M. Flores, A. Abo Riziq, et al., “Chemical, physical, and optical evolution of biomass burning aerosols: A case study,” Atmos. Chem. Phys. 11 (4), 1491–1503 (2011).

    Article  Google Scholar 

  14. M. O. Andreae and D. Rosenfeld, “Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols,” Earth-Sci. Rev. 89, 13–41 (2008).

    Article  Google Scholar 

  15. S. J. Smith and T. C. Bond, “Two hundred fifty years of aerosols and climate: The end of the age of aerosols,” Atmos. Chem. Phys. 14 (2), 537–549 (2014).

    Article  Google Scholar 

  16. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    Article  Google Scholar 

  17. R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, et al., “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Oceanic Opt. 27 (3), 275–282 (2014).

    Article  Google Scholar 

  18. S. Kuokka, K. Teinilä, K. Saarnio, et al., “Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok,” Atmos. Chem. Phys. 7 (18), 4793–4805 (2007).

    Article  Google Scholar 

  19. http://irkipedia.ru/content/klimat_baykala_bibliografiya_aerozoli_i_matematicheskoe_modelirovanie_atmosfernyh_processov.

  20. A. S. Safatov, G. A. Buryak, S. E. Ol’kin, et al., “Analysis of monitoring data on organic/elemental carbon and total protein in ground air layer aerosol in the south of Western Siberia,” Opt. Atmos. Okeana 27 (2), 164–168 (2014).

    Article  Google Scholar 

  21. J. Heintzenberg, W. Birmili, R. Otto, et al., “Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009,” Atmos. Chem. Phys. 11 (3), 8703–8719 (2011).

    Article  Google Scholar 

  22. X. Chi, J. Winderlich, J. C. Mayer, et al., “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13 (24), 12271–12298 (2013).

    Article  Google Scholar 

  23. W. Birmili, K. Stopfkuchen, M. Herman, et al., “Particle penetration through a 300 m inlet pipe for sampling atmospheric aerosols from a tall meteorological tower,” Aerosol Sci. Technol. 41, 811–817 (2007).

    Article  Google Scholar 

  24. W. Maenhaut and M. Claeys, Characterisation and Sources of Carbonaceous Atmospheric Aerosols (Belgian Sci. Policy, Brussels, 2007).

    Google Scholar 

  25. M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosol Sci. Technol. 25 (3), 221–241 (1996).

    Article  Google Scholar 

  26. B. Turpin and H. J. Lim, “Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass,” Aerosol Sci. Technol. 35, 602–610 (2001).

    Article  Google Scholar 

  27. W. Maenhaut, S. Nava, F. Lucarelli, et al., “Chemical composition, impact from biomass burning, and mass closure for PM(2.5) and PM(10) aerosols at Hyytiala, Finland, in summer 2007,” X-Ray Spectrom. 40, 168–171 (2011). doi 10.1002/Xrs.1302

    Article  Google Scholar 

  28. W. Maenhaut, N. Raes, X. Chi, et al., “Chemical composition and mass closure for PM2.5 and PM10 aerosols at K-puszta, Hungary, in summer 2006,” X-Ray Spectrom. 37, 193–197 (2008). doi 10.1002/xrs.1062

    Article  Google Scholar 

  29. J. C. Lin, C. Gerbig, S. C. Wofsy, et al., “A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model,” J. Geophys. Res. 108 (D16), 4493 (2003). doi 10.1029/2002jd003161

    Google Scholar 

  30. R. R. Draxler and G. D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (2013). http://www.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  31. L. Giglioa, J. Descloitresa, C. O. Justicec, et al., “An enhanced contextual fire detection algorithm for MODIS,” Remote Sens. Environ. 87, 273–282 (2003).

    Article  Google Scholar 

  32. J. Williams, J. Crowley, H. Fischer, et al., “The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): An overview of meteorological and chemical influences,” Atmos. Chem. Phys. 11 (20), 10599–10618 (2011).

    Article  Google Scholar 

  33. P. Tunved, H. C. Hansson, V. M. Kerminen, et al., “High natural aerosol loading over boreal forests,” Science 312, 261–263 (2006).

    Article  Google Scholar 

  34. W. R. Leaitch, A. M. Macdonald, P. C. Brickell, et al., “Temperature response of the submicron organic aerosol from temperate forests,” Atmos. Environ. 45, 6696–6704 (2011).

    Article  Google Scholar 

  35. Y. Zhang, D. Obrist, B. Zielinka, and A. Gertler, “Particulate emissions from different type of biomass burning,” Atmos. Environ. 72, 27–35 (2013).

    Article  Google Scholar 

  36. P. Hari and M. Kulmala, “Station for measuring ecosystem-atmosphere relations (SMEAR II),” Boreal Environ. Res. 10, 315–322 (2005).

    Google Scholar 

  37. W. Maenhaut, W. Wang, and X. Chi, “Semivolatile behavior and filter sampling artifacts for dicarboxylic acids during summer campaigns at three forested sites in Europe,” Boreal Environ. Res. 16, 273–287 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Mikhailov.

Additional information

Original Russian Text © E.F. Mikhailov, S.Yu. Mironova, M.V. Makarova, S.S. Vlasenko, T.I. Ryshkevich, A.V. Panov, M.O. Andreae, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 4, pp. 484–492.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, E.F., Mironova, S.Y., Makarova, M.V. et al. Studying seasonal variations in carbonaceous aerosol particles in the atmosphere over central Siberia. Izv. Atmos. Ocean. Phys. 51, 423–430 (2015). https://doi.org/10.1134/S000143381504009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381504009X

Keywords

Navigation