Skip to main content
Log in

Numerical simulation of Brownian coagulation under turbulent mixing conditions

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Brownian coagulation under turbulent mixing conditions is considered. The aerosol kinetics module integrated into the three-dimensional hydrodynamic model describing the process of turbulent mixing on the basis of large-eddy simulation makes it possible to show that the mixing of air masses containing different-sized aerosol particles intensifies the coagulation processes. It is demonstrated that the use of Reynolds-averaged hydrodynamic equations, which are widely used for the simulation of turbulent flows, can lead to a significant underestimation of coagulation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Herwehe, R. T. McNider, and M. J. Newchurch, “A numerical study of the effects of large eddies on photochemistry in the convective boundary layer,” in Proc. of the 14th Symposium on Boundary Layer and Turbulence (Aspen, Colorado, 2000), pp. 235–238.

    Google Scholar 

  2. J. P. Meeder and F. T. M. Nieuwstadt, “Large-eddy simulation of the turbulent dispersion of a reactive plume from a point source into a neutral atmospheric boundary layer,” Atmos. Environ. 34, 3563–3573 (2000).

    Article  Google Scholar 

  3. R. I. Sykes, S. F. Parker, D. S. Henn, and W. S. Lewellen, “Turbulent mixing with chemical reaction in the planetary boundary layer,” J. Appl. Meteorol. 33, 825–834 (1994).

    Article  Google Scholar 

  4. C. Housiadas, Y. Drossinos, and M. Lazaridis, “Effect of small-scale turbulent fluctuations on rates of particle formation,” Aerosol Sci. 35, 545–559 (2004).

    Article  Google Scholar 

  5. A. Khain, M. Pinsky, T. Elperin, N. Kleeorin, I. Rogachevskii, A. Kostinski, “Critical comments to results of investigations of drop collisions in turbulent clouds,” Atmos. Res. 86, 1–20 (2007).

    Article  Google Scholar 

  6. G. Falkovich, A. Fouxon, and M. G. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature 419 (12), 151–154 (2002).

    Article  Google Scholar 

  7. G. Kasper, “On the coagulation rate of aerosols with spatially inhomogeneous particle concentrations,” J. Colloid Interface Sci. 102, 560–562 (1984).

    Article  Google Scholar 

  8. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics. Theory of Turbulence (Nauka, Moscow, 1967), Vol. 1 [in Russian].

    Google Scholar 

  9. S. V. Lutsenko, V. I. Lebedev, and V. N. Lykosov, “Simulation of soil aerosol transport processes in the atmospheric convective boundary layer,” in Proceedings of the International Conference “Physics of Atmospheric Aerosol” (Dialog MGU, Moscow, 1999), pp. 216–226 [in Russian].

    Google Scholar 

  10. M. Chamecki, C. Meneveau, and M. B. Parlange, “Large eddy simulation of pollen transport in the atmospheric boundary layer,” Aerosol Sci. 40, 241–255 (2009).

    Article  Google Scholar 

  11. E. N. Stankova and M. A. Zatevakhin, “The modified Kovetz and Olund method for the numerical solution of stochastic coalescence equation,” in Proceedings of the 12th International Conference on Clouds and Precipitation (Zurich, 1996), pp. 921–923.

    Google Scholar 

  12. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, Dordrecht, 1997).

    Google Scholar 

  13. J. W. Deardorff, “Stratocumulus-capped mixed layers derived from a three-dimensional model,” Boundary-Layer Meteorol. 18, 495–527 (1980).

    Article  Google Scholar 

  14. J. Kim and P. Moin, “Application of fractional-step method to incompressible Navier–Stokes equations,” J. Comput. Phys. 59, 308–323 (1985).

    Article  Google Scholar 

  15. S. A. Piacsek and G. P. Williams, “Conservation properties of convection difference schemes,” J. Comput. Phys. 6 (3), 392–405 (1970).

    Article  Google Scholar 

  16. G. Jiang and C. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126, 202–228 (1996).

    Article  Google Scholar 

  17. A. Andren, A. R. Brown, J. Graf, et al., “Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes,” Q. J. R. Meteorol. Soc. 120, 1457–1484 (1994).

    Article  Google Scholar 

  18. J. W. Deardorff, G. E. Willis, and D. K. Lilly, “Laboratory investigation of non-steady penetrative convection,” J. Fluid Mech. 35, 7–31 (1969).

    Article  Google Scholar 

  19. Atmospheric Turbulence and Air Pollution Modelling, Ed. by F. T. M. Nieuwstadt and H. van Dop (Springer, Netherlands, 1982; Gidrometeoizdat, Leningrad, 1985).

  20. A. G. Sutugin, “Laws of Brownian coagulation in the system of variable particle-size concentration,” Dokl. Akad. Nauk SSSR 293 (2), 332–335 (1987).

    Google Scholar 

  21. A. Petzold, C. Stein, S. Nyeki, et al., “Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and chemistry,” Geophys. Res. Lett. 30 (13), 52-1–52-14 (2003). doi 10.1029/2003GL017283

    Article  Google Scholar 

  22. A. A. Lushnikov and V. N. Piskunov, “Coagulation in the presence of external sources,” Dokl. Akad. Nauk SSSR 231 (6), 1403–1406 (1976).

    Google Scholar 

  23. H. Schmidt and U. Schumann, “Coherent structure of the convective boundary layer derived from large-eddy simulations,” J. Fluid Mech. 200, 511–562 (1989).

    Article  Google Scholar 

  24. A. Kovetz and B. Olund, “The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent,” J. Atmos. Sci. 26 (6), 1060–1065 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zatevakhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatevakhin, M.A., Ignatyev, A.A. & Govorkova, V.A. Numerical simulation of Brownian coagulation under turbulent mixing conditions. Izv. Atmos. Ocean. Phys. 51, 148–155 (2015). https://doi.org/10.1134/S0001433815010132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815010132

Keywords

Navigation