Skip to main content
Log in

Chlorine nitrate in the atmosphere over St. Petersburg

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Ground-based measurements of the total chlorine nitrate (ClONO2) in the atmosphere have been taken for the first time in Russia using the Bruker IFS-125HR infrared (IR) Fourier spectrometer (FS). The average error of the total ClONO2 measurements, performed in 2009–2012 in Peterhof, is (25 ± 10)%. The results have been compared with measurements performed using similar devices at the NDACC network, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, and the total ClONO2 numerical simulation (performed using the EMAC chemical climatic model). The total ClONO2 seasonal variations are similar for three considered observation stations (Peterhof, Kiruna, and Eureka) with the maximum in February-March, which is more pronounced at higher latitudes. High correlations (R = 0.7–0.9) between the MIPAS satellite data, ground-based measurements near St. Petersburg, and the values calculated using the EMAC model have been revealed. The modeling data are on average smaller than the data of the ground-based and satellite measurements. An analysis of the seasonal variations in the total ClONO2 monthly average values in the St. Petersburg region indicated that this difference is caused by the fact that the model underestimated the maximal total ClONO2 values in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37(3), 275–316 (1999).

    Article  Google Scholar 

  2. R. Nassar, P. F. Bernath, C. D. Boone, et al., “A global inventory of stratospheric chlorine in 2004,” J. Geophys. Res. 111, D22312 (2006). doi: 10.1029/2006JD007073

    Article  Google Scholar 

  3. D. G. Murcray, A. Goldman, F. H. Murcray, et al., “Stratospheric distribution of ClONO2,” Geophys. Res. Lett. 6(11), 857–859 (1979).

    Article  Google Scholar 

  4. R. Zander, C. P. Rinsland, C. B. Farmer, et al., “Observation of several chlorine nitrate (ClONO2) bands in stratospheric infrared spectra,” Geophys. Res. Lett. 13(8), 757–760 (1986).

    Article  Google Scholar 

  5. C. P. Rinsland, M. R. Gunson, R. J. Salawitch, et al., “ATMOS/ATLAS-3 measurements of stratospheric chlorine and reactive nitrogen partitioning inside and outside the November 1994 Antarctic Vortex,” Geophys. Res. Lett. 23(17), 2365–2368 (1996).

    Article  Google Scholar 

  6. H. Nakajima, T. Sugita, H. Irie, et al., “Measurements of ClONO2 by the Improved Limb Atmospheric Spectrometer (ILAS) in high-latitude stratosphere: New products using version 6.1 data processing algorithm,” J. Geophys. Res. 111, D11S01 (2006). doi: 10.1029/2005JD006441

    Google Scholar 

  7. M. Höpfner, T. von Clarmann, H. Fischer, et al., “Validation of MIPAS ClONO2 measurements,” Atmos. Chem. Phys. 7(1), 257–281 (2007).

    Article  Google Scholar 

  8. E. Mahieu, R. Zander, P. Duchatelet, et al., “Comparisons between ACE-FTS and ground-based measurements of stratospheric HCl and ClONO2 loadings at northern latitudes,” Geophys. Res. Lett. 32(15), L15S08 (2005). doi: 10.1029/2005GL022396

    Google Scholar 

  9. R. Zander and P. Demoulin, “Spectroscopic evidence for the presence of the ν4-Q branch of chlorine nitrate (ClONO2) in ground-based infrared solar spectra,” J. Atmos. Chem. 6(3), 191–200 (1998).

    Article  Google Scholar 

  10. C. B. Farmer, G. C. Toon, P. W. Schaper, et al., “Stratospheric trace gases in the spring 1986 Antarctic atmosphere,” Nature, No. 329, 126–130 (1987).

    Google Scholar 

  11. Network for the Detection of Atmospheric Composition Change. http://ndacc.org/.

  12. A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Oceanic Opt. 23(2), 161–163 (2010).

    Article  Google Scholar 

  13. H. Fischer, M. Birk, C. Blom, et al., “MIPAS: An instrument for atmospheric and climate research,” Atmos. Chem. Phys., 8(8), 2151–2188 (2008).

    Article  Google Scholar 

  14. P. Jöckel, H. Tost, A. Pozzer, et al., “The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere,” Atmos. Chem. Phys., 6(12), 5067–5104 (2006).

    Article  Google Scholar 

  15. F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87(1), 25–52 (2004).

    Article  Google Scholar 

  16. L. Lait, P. Newman, and R. Schoeberl, Using the Goddard Automailer 2005. http://code916.gsfc.nasa.gov/Dataservices.

  17. M. Park, W. J. Randel, D. E. Kinnison, et al., “Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM,” J. Geophys. Res.: Atmos. 118(4), 1964–1980 (2013).

    Google Scholar 

  18. D. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9(1), 84–97 (1962).

    Article  Google Scholar 

  19. A. N. Tikhonov, “On the solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).

    Google Scholar 

  20. H. Norton and R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66(3), 259–264 (1976).

    Article  Google Scholar 

  21. M. Schneider and F. Hase, “Technical note: Recipe for monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).

    Article  Google Scholar 

  22. L. S. Rothman, I. E. Gordon, A. Barbe, et al., “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572.

  23. R. Kohlhepp, S. Barthlott, T. Blumenstock, et al., “Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations,” Atmos. Chem. Phys. 11(10), 4669–4677 (2011).

    Article  Google Scholar 

  24. J. W. Hannigan, M. T. Coffey, and A. Goldman, “Semiautonomous FTS observation system for remote sensing of stratospheric and tropospheric gases,” J. Atmos. Oceanic Technol. 26(9), 1814–1828 (2009).

    Article  Google Scholar 

  25. T. von Clarmann, M. Höpfner, S. Kellmann, et al., “Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements,” Atmos. Meas. Technol. 2(1), 159–175 (2009).

    Article  Google Scholar 

  26. A. T. Brown, M. P. Chipperfield, C. Boone, et al., “Trends in atmospheric halogen containing gases since 2004,” J. Quant. Spectrosc. Radiat. Transfer 112(16), 2552–2566.

  27. G. Wetzel, H. Oelhaf, O. Kirner, et al., “Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex,” Atmos. Chem. Phys. 12(14), 6581–6592 (2012).

    Article  Google Scholar 

  28. R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, et al., “Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances,” Atmos. Chem. Phys. 12(7), 3527–3556 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Additional information

Original Russian Text © Ya.A. Virolainen, Yu.M. Timofeyev, A.V. Poberovskii, O. Kirner, M. Hoepfner, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 1, pp. 60–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Timofeyev, Y.M., Poberovskii, A.V. et al. Chlorine nitrate in the atmosphere over St. Petersburg. Izv. Atmos. Ocean. Phys. 51, 49–56 (2015). https://doi.org/10.1134/S0001433815010119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815010119

Keywords

Navigation