Skip to main content
Log in

Calculation of the Lightning Potential Index and electric field in numerical weather prediction models

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Modern methods for predicting thunderstorms and lightnings with the use of high-resolution numerical models are considered. An analysis of the Lightning Potential Index (LPI) is performed for various microphysics parameterizations with the use of the Weather Research and Forecasting (WRF) model. The maximum index values are shown to depend significantly on the type of parameterization. This makes it impossible to specify a single threshold LPI for various parameterizations as a criterion for the occurrence of lightning flashes. The topographic LPI maps underestimate the sizes of regions of likely thunderstorm-hazard events. Calculating the electric field under the assumption that ice and graupel are the main charge carriers is considered a new algorithm of lightning prediction. The model shows that the potential difference (between the ground and cloud layer at a given altitude) sufficient to generate a discharge is retained in a larger region than is predicted by the LPI. The main features of the spatial distribution of the electric field and potential agree with observed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Petersen and S. A. Rutledge, “On the relationship between cloud-to-ground lightning and convective rainfall,” J. Geophys. Res.: Atmos. 103 (D12), 14025–14040 (1998).

    Article  Google Scholar 

  2. S. J. Cecil, D. J. Goodman, E. J. Boccippio, et al., “Three years of TRMM precipitation features. Part 1: Radar, radiometric, and lightning characteristics,” Mon. Weather Rev. 133 (3), 543–566 (2005).

    Article  Google Scholar 

  3. W. A. Petersen, H. J. Christian, and S. A. Rutledge, “TRMM observations of the global relationship between ice water content and lightning,” Geophys. Res. Lett. 32 (14), L14819 (2005).

    Article  Google Scholar 

  4. S. Sturtevant, The Severe Local Storm Forecasting Primer (Weather Scratch Meteorology Service, Florence, 1995).

    Google Scholar 

  5. E. R. Williams and N. Renno, “An analysis of the conditional instability of the tropical atmosphere,” Mon. Weather Rev. 121 (1), 21–36 (1993).

    Article  Google Scholar 

  6. D. R. Bright, M. S. Wandishin, R. E. Jewell, and S. J. Weiss, “A physically based parameter for lightning prediction and its calibration in ensemble forecasts,” in Proceedings of Conference on Meteorological Applications of Lightning Data (American Meteorological Society, San-Diego, California, 2005).

    Google Scholar 

  7. A. S. Zverev, Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  8. Y. Yair, B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, and M. del C. Llasat Botija, “Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields,” J. Geophys. Res. 115 (D4), D04205 (2010).

    Google Scholar 

  9. B. Lynn and Y. Yair, “Prediction of lightning flash density with the WRF model,” Adv. Geosci. 23, 11–16 (2010).

    Article  Google Scholar 

  10. http://www.wrf-model.org.

  11. N. F. Vel’tishchev, V. D. Zhupanov, “Experiments on numerical modeling of intense convection,” Russ. Meteorol. Hydrol. 33 (9), 560–569 (2008).

    Article  Google Scholar 

  12. N. F. Vel’tishchev, V. D. Zhupanov, Yu. B. Pavlyukov, “Short-range forecast of heavy precipitation and strong wind using the convection-allowing WRF models,” Russ. Meteorol. Hydrol. 36 (1), 1–10 (2011).

    Article  Google Scholar 

  13. Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” J. Clim. Appl. Meteorol. 22 (6), 1065–1092 (1983).

    Article  Google Scholar 

  14. S. A. Rutledge and P. V. Hobbs, “The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands,” J. Atmos. Sci. 41 (20), 2949–2972 (1984).

    Article  Google Scholar 

  15. J. Dudhia, S.-Y. Hong, and K.-S. Lim, “A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations,” J. Meteorol. Soc. Jpn. 86A, 33–44 (2008).

    Article  Google Scholar 

  16. S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Mon. Weather Rev. 132 (1), 103–120 (2004).

    Article  Google Scholar 

  17. M. McCumber, W.-K. Tao, J. Simpson, et al., “Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection,” J. Appl. Meteorol. 30 (7), 985–1004 (1991).

    Article  Google Scholar 

  18. W.-K. Tao, J. Simpson, and M. McCumber, “An icewater saturation adjustment,” Mon. Weather Rev. 117 (1), 231–235 (1989).

    Article  Google Scholar 

  19. W.-K. Tao, J. Simpson, D. Baker, et al., “Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model,” Meteorol. Atmos. Phys. 82 (1), 97–137 (2003).

    Article  Google Scholar 

  20. W. D. Keith and C. P. R. Saunders, “Charge transfer during multiple large ice crystal interactions with a riming target,” J. Geophys. Res.: Atmos. 94 (D11), 13103–13106 (1989).

    Article  Google Scholar 

  21. S. C. Sherwood, V. T. J. Phillips, and J. S. Wettlaufer, “Small ice crystals and the climatology of lightning,” Geophys. Res. Lett. 33 (5), L05804 (2006).

    Article  Google Scholar 

  22. W. Deierling, J. A. Petersen, S. Latham, et al., “The relationship between lightning activity and ice fluxes in thunderstorms,” J. Geophys. Res.: Atmos. 113 (D15), D15210 (2008).

    Article  Google Scholar 

  23. W. Deierling and W. A. Petersen, “Total lightning activity as an indicator of updraft characteristics,” J. Geophys. Res.: Atmos. 113 (D16), D16210 (2008).

    Article  Google Scholar 

  24. D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford University Press, New York, 1998).

    Google Scholar 

  25. S. E. Reynolds, M. Brook, and M. F. Gourley, “Thunderstorm charge separation,” J. Meteorol. 14, 426–436 (1957).

    Article  Google Scholar 

  26. T. Takahashi, “Riming electrification as a charge generation mechanism in thunderstorms,” J. Atmos. Sci. 35 (8), 1536–1548 (1978).

    Article  Google Scholar 

  27. E. R. Jayaratne, C. P. R. Saunders, and J. Hallett, “Laboratory studies of the charging of soft-hail during ice crystal interactions,” Q. J. R. Meteorol. Soc. 109, 609–630 (1983).

    Article  Google Scholar 

  28. C. P. R. Saunders, W. D. Keith, and R. P. Mitzeva, “The effect of liquid water on thunderstorm charging,” J. Geophys. Res. 96 (D6), 11007–11017 (1991).

    Article  Google Scholar 

  29. C. P. R. Saunders and S. L. Peck, “Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions,” J. Geophys. Res. 103 (D12), 13949–13956 (1998).

    Article  Google Scholar 

  30. E. R. Mansell, D. R. MacGorman, C. L. Ziegler, and J. M. Straka, “Charge structure and lightning sensitivity in a simulated multicell thunderstorm,” J. Geophys. Res.: Atmos. 110 (D12), D12101 (2005).

    Article  Google Scholar 

  31. C. Saunders, “Charge separation mechanisms in clouds,” in Planetary Atmospheric Electricity (Springer, New York, 2008), pp. 335–353.

    Chapter  Google Scholar 

  32. A. A. Evtushenko and E. A. Mareev, “On the generation of charge layers in MCS stratiform regions,” Atmos. Res. 91 (2), 272–280 (2009).

    Article  Google Scholar 

  33. A. A. Evtushenko and E. A. Mareev, “Generating electric-discharge layers in mesoscale convective systems,” Izv., Atmos. Ocean. Phys. 45 (2), 242–252 (2009).

    Article  Google Scholar 

  34. H. Volland, Atmospheric Electrodynamics (Springer, Berlin, 1985).

    Google Scholar 

  35. M. G. Bateman, T. C. Marshall, M. Stolzenburg, and W. D. Rust, “Precipitation charge and size measurements inside a New Mexico mountain thunderstorm,” J. Geophys. Res. 104 (D8), 9643–9653 (1999).

    Article  Google Scholar 

  36. M. Stolzenburg and T. C. Marshall, “Charged precipitation and electric field in two thunderstorms,” J. Geophys. Res. 103 (D16), 19777–19790 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Dementyeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dementyeva, S.O., Ilin, N.V. & Mareev, E.A. Calculation of the Lightning Potential Index and electric field in numerical weather prediction models. Izv. Atmos. Ocean. Phys. 51, 186–192 (2015). https://doi.org/10.1134/S0001433815010028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815010028

Keywords

Navigation