Skip to main content
Log in

Influence of atmospheric static stability and meridional temperature gradient on the growth in amplitude of synoptic-scale unstable waves

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Observations and results of numerical experiments with climate models under different green-house-gas emission scenarios point to a reconstruction of the thermal and circulation atmospheric regime induced by global climate changes. In particular, an increase in atmospheric static stability, a poleward shift of midlatitude storm tracks, a decrease in the frequency of extratropical cyclones, and a change in their intensity are found at tropical and middle latitudes. This paper, using a simplified idealized model of baroclinic instability, investigates the influence of small variations in the basic atmospheric parameters governing the development of baroclinic instability, namely, static stability and the vertical quasi-zonal flow velocity shear induced by a meridional temperature gradient, on variations in the growth rate of the amplitude of synopticscale unstable waves. Analytical expressions are derived for absolute and relative sensitivity functions to estimate the absolute and relative contribution of variations in the static stability and the vertical flow velocity shear to a change in the growth rate of the amplitude of unstable modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Matveev, Theory of Atmospheric General Circulation and the Earth’s Climate(Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  2. J. R. Holton, An Introduction to Dynamic Meteorology (Academic, New York, 1992).

    Google Scholar 

  3. V. P. Dymnikov and A. N. Filatov, Stability of Large-Scale Atmospheric Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  4. V. P. Dymnikov, Stability and Predictability of Large-Scale Atmospheric Processes (IVM RAN, Moscow, 2007) [in Russian].

    Google Scholar 

  5. R. T. Pierrehumbert and K. L. Swanson, “Baroclinic instability,” Ann. Rev. Fluid Mech. 27, 419–467 (1995).

    Article  Google Scholar 

  6. Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Ed. by R. Nakicenovic and R. Swart (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  7. I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, and R. R. Khairullin, “The effect of global climatic changes on atmospheric eddy activity,” Izv., Akad. Nauk, Fiz. Atmos. Okeana 28(1), 11–26 (1992).

    Google Scholar 

  8. S. J. Lambert, “The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths,” J. Clim. 8(5), 1447–1452 (1995).

    Article  Google Scholar 

  9. F. Lunkeit, K. Fraedrich, and S. E. Bauer, “Storm tracks in a warmer climate: Sensitivity studies with a simplified global circulation model,” Clim. Dyn. 14(11), 813–826 (1998).

    Article  Google Scholar 

  10. S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data,” Clim. Dyn. 17(10), 795–809 (2001).

    Article  Google Scholar 

  11. I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of global and regional climate changes during the 19th-21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing,” Izv., Atmos. Ocean. Phys. 38(5), 555–568 (2002).

    Google Scholar 

  12. Q. Geng and M. Sugi, “Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulphate aerosols-study with a high-resolution AGCM,” J. Clim. 16(13), 2262–2274 (2003).

    Article  Google Scholar 

  13. J. H. Yin, “A consistent poleward shift of the storm tracks in simulations of 21st century climate,” Geophys. Res. Lett. 32, L18701 (2005).

    Article  Google Scholar 

  14. L. Bengtsson, K. I. Hodges, and E. Roeckner, “Storm tracks and climate change,” J. Clim. 19(15), 3518–3543 (2006).

    Article  Google Scholar 

  15. X. L. Wang, V. R. Swail, and F. W. Zviers, “Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP-NCAR reanalysis for 1958–2001,” J. Clim. 19(13), 3145–3166 (2006).

    Article  Google Scholar 

  16. S. J. Lambert and J. C. Fyfe, “Changes in winter cyclones frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise,” Clim. Dyn. 26(7–8), 713–728 (2006).

    Article  Google Scholar 

  17. Y. Wu, M. Ting, R. Seager, et al., “Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model,” Clim. Dyn. 37(1–2), 53–72 (2011).

    Article  Google Scholar 

  18. M. G. Akperov and I. I. Mokhov, “Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime,” Izv., Atmos. Ocean. Phys. 49(2), 113–120 (2013).

    Article  Google Scholar 

  19. C. Mbengue and T. Schneider, “Storm track shift under climate change: What can be learned from large-scale dry dynamics,” J. Clim. 26(24), 9923–9930 (2013).

    Article  Google Scholar 

  20. M. N. Juckes, “The static stability of the midlatitude troposphere: The relevance of moisture,” J. Atmos. Sci. 57(18), 3050–3057 (2000).

    Article  Google Scholar 

  21. D. M. W. Frierson, “Robust increases in midlatitude static stability in global warming simulations,” Geophys. Res. Lett. 33, L24816 (2006).

    Article  Google Scholar 

  22. D. M. W. Frierson, “Midlatitude static stability in simple and comprehensive general circulation models,” J. Atmos. Sci. 65(3), 1049–1062 (2008).

    Article  Google Scholar 

  23. K.-M. Xu and K. A. Emanuel, “Is the tropical atmosphere conditionally unstable?,” Mon. Wea. Rev. 117(7), 1471–1479 (1989).

    Article  Google Scholar 

  24. R. J. Allen and S. C. Sherwood, “Warming maximum in the tropical upper troposphere deduced from thermal wind observations,” Nature Geosci. 1(6), 399–403 (2008).

    Article  Google Scholar 

  25. E. T. Eady, “Long waves and cyclone waves,” Tellus 1(3), 33–52 (1949).

    Article  Google Scholar 

  26. V. P. Dymnikov, “Development of baroclinic instability in the atmosphere with a variable parameter of static stability,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 14(5), 493–500 (1978).

    Google Scholar 

  27. S. J. Lindzen and B. F. Farrell, “A simple approximate result for maximum growth rate of baroclinic instabilities,” J. Atmos. Sci. 37(7), 1648–1654 (1980).

    Article  Google Scholar 

  28. J. S. Frederiksen and C. S. Frederiksen, Decadal Changes in Southern Hemisphere Winter Cyclogenesis (CSIRO Marine and Atmospheric Research Paper no. 2) (CSIRO, Aspendale, 2005).

    Google Scholar 

  29. J. S. Frederiksen and C. S. Frederiksen, “Inter-decadal changes in southern hemisphere winter storm track modes,” Tellus 59(5), 599–617 (2007).

    Article  Google Scholar 

  30. I. A. Pisnichenko, “Influence of variable static stability on the dynamics of ultra long waves in a two-dimensional baroclinic atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 19(11), 924–927 (1983).

    Google Scholar 

  31. A. M. Obukhov, “On the problem of geostrophic wind,” Izv. Akad. Nauk, Ser. Geograf. Geofiz. 13(4), 281–306 (1949).

    Google Scholar 

  32. A. Brown, S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, “Unified modeling and prediction of weather and climate: A 25-year journey,” Bull. Am. Meteorol. Soc. 93(12), 1865–1877 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Soldatenko.

Additional information

Original Russian Text © S.A. Soldatenko, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 6, pp. 630–638.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, S.A. Influence of atmospheric static stability and meridional temperature gradient on the growth in amplitude of synoptic-scale unstable waves. Izv. Atmos. Ocean. Phys. 50, 554–561 (2014). https://doi.org/10.1134/S0001433814060152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814060152

Keywords

Navigation