Skip to main content
Log in

Estimation of biogenic CH4 and CO2 emissions and dry deposition of O3 using 222Rn measurements in TROICA expeditions

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

On the basis of simultaneous measurements of surface concentrations of CH4, CO2, O3, and 222Rn during 6 TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) expeditions along the Trans-Siberian Railway from Moscow to Vladivostok in 1999–2008, we have estimated the biogenic emissions of CH4 and CO2 from terrestrial ecosystems and the nighttime sink of O3 on the underlying surface from data on the accumulation rate of 222Rn under conditions of near-surface temperature inversion. The regional emissions of CH4 were the highest in summer in the Far East (0.87 ± 0.52 μg m−2 s−1) and in West Siberia (0.77 ± 0.41 μg m−2 s−1), which is associated with significant methane flows from wetlands and moist soils that are typical for these regions. The biogenic emissions of CO2 vary on average from 0.18 ± 0.04 μg m−2 s−1 in West Siberia to 0.89 ± 0.07 μg m−2 s−1 in East Siberia. The nighttime sink of O3 has a seasonal maximum in summer and varies from 0.05 ± 0.01 μg m−2 s−1 in West Siberia to 0.07 ± 0.01 μg m−2 s−1 in Central Siberia; the dry deposition rate of O3 varies from 0.10 ± 0.08 cm s−1 in West Siberia to 0.33 ± 0.21 cm s−1 in East Siberia and the Far East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. de Miguel and J. Bilbao, “Ozone dry deposition and resistances onto green grassland in summer in central Spain,” J. Atmos. Chem. 34(3), 321–338 (1999). doi: 10.1023/A:1006277705046

    Article  Google Scholar 

  2. F. Takakai, A. R. Desyatkin, C. M. L. Lopez, A. N. Fedorov, R. V. Desyatkin, and R. Hatano, “Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia,” Soil Sci. Plant Nutr. 54, 938–949 (2008). doi: 10.1111/j.1747-0765.2008.00309.x

    Article  Google Scholar 

  3. S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Assessment of changes in methane emissions from marsh ecosystems of northern Eurasia in the 21st century using regional climate model results,” Russ. Meteorol. Hydrol. 35(2), 115–120 (2010).

    Article  Google Scholar 

  4. S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Sensitivity of methane emissions from marsh ecosystems of West Siberia to climate changes: Multimodel estimates,” Opt. Atmos. Okeana 24(4), 319–322 (2011).

    Article  Google Scholar 

  5. V. N. Kudeyarov, “Contribution of soil to atmospheric CO2 balance in Russia,” Dokl. Biol. Sci. 375(6), 610–612 (2000).

    Article  Google Scholar 

  6. WMO Greenhouse Gas Bulletin (GHG Bulletin). The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2009. World Meteorological Organization, 2010, No. 6.

    Google Scholar 

  7. S. C. Whalen and W. S. Reeburgh, “Consumption of atmospheric methane by tundra soils,” Nature 346, 160–162 (1990). doi: 10.1038/346160a0

    Article  Google Scholar 

  8. K. P. Wickland, R. G. Striegl, J. C. Neff, and T. Sachs, “Effects of permafrost melting on CO2 and CH4 exchange of a poorly-drained black spruce lowland,” J. Geophys. Res. 111, G02011 (2006). doi: 10.1029/2005JG000099

    Google Scholar 

  9. M. V. Glagolev, I. E. Kleptsova, I. V. Filippov, et al., “Methane emissions from subtaiga mires of Western Siberia: The standard model Bc5,” Moscow Univ. Soil Sci. Bull. 65(2), 86–93 (2010). doi: 10.3103/S0147687410020067

    Article  Google Scholar 

  10. M. L. Wesely, J. A. Eastman, D. H. Stedman, and E. D. Yalvac, “An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux,” Atmos. Environ. 16(4), 825–820 (1982). doi: 10.1016/0004-6981(82)90399-7

    Article  Google Scholar 

  11. D. G. Zamolodchikov, D. V. Karelin, A. I. Ivashchenko, and V. O. Lopes de Gerenyu, “Micrometeorological assessment of biogenic fluxes of carbon dioxide in typical tundra ecosystems of eastern Chukotka,” Eurasian Soil Sci. 38(7), 759–763 (2005).

    Google Scholar 

  12. J. G. Droppo, Jr., “Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods,” J. Geophys. Res. 90(D1), 2111–2118 (1985). doi: 10.1029/JD090iD01p02111

    Article  Google Scholar 

  13. J. Padro, “Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer,” Atmos. Environ. 30(13), 2363–2369 (1996). doi: 10.1016/1352-2310(95)00352-5

    Article  Google Scholar 

  14. M. L. Wesely and B. B. Hicks, “A review of the current status of knowledge on dry deposition,” Atmos. Environ. 34(12–14), 2261–2282 (2000). doi: 10.1016/S1352-2310(99)00467-7

    Article  Google Scholar 

  15. Y. Tohjima, H. Wakita, T. Machida, et al., “Distribution and emission of CH4 over Central West Siberian lowland,” in Airborne Measurements of Greenhouse Gases over Siberia III: International Symposium on Global Cycles of Atmospheric Greenhouse Gases (Sendai, Japan, 1994), pp. 9–21.

    Google Scholar 

  16. N. S. Panikov and S. N. Dedysh, “Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics,” Global Biogeochem. Cycles 14(4), 1071–1080 (2000). doi: 10.1029/1999GB900097

    Article  Google Scholar 

  17. M. Glagolev, I. Kleptsova, I. Filippov, et al., “Regional methane emission from West Siberia mire landscapes,” Environ. Res. Lett. 6(4), 1–7 (2011). doi: 10.1088/1748-9326/6/4/045214

    Article  Google Scholar 

  18. C. Wille, L. Kutzbach, T. Sachs, et al., “Methane emission from Siberian arctic polygonal tundra, eddy covariance measurements and modeling,” Global Change Biol. 14, 1395–1408 (2008). doi: 10.1111/j.1365-2486.2008.01586.x

    Article  Google Scholar 

  19. T. Sachs, M. Giebels, J. Boike, and L. Kutzbach, “Environmental controls on CH4 emission from polygonal tundra on the micro-site scale in the Lena River delta, Siberia,” Global Change Biol. 16, 3096–3110 (2010). doi: 10.1111/j.1365-2486.2010.02232.x

    Google Scholar 

  20. O. V. Masyagina, S. G. Prokushkin, S. Mori, et al., “CO2 emissions of the non-tree vegetation cover in larch (Larix gmelinii (Rupr.)) stands in the Central Evenkia region of Siberia, Russia,” Eurasian J. Forest Res. 9(1), 17–28 (2006).

    Google Scholar 

  21. T. Sawamoto, R. Hatano, M. Shibuya, K. Takahashi, A. P. Isaev, and R. M. Desyatkin, “CO2, N2O, CH4 fluxes from soil in Siberian-taiga larch forests with different histories of forest fire,” Tohoku Geophys. J. 36(2), 77–89 (2001).

    Google Scholar 

  22. O. Shibistova, J. Lloyd, S. Evgrafova, et al., “Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest,” Tellus B, Chem. Phys. Meteorol. 54(5), 552–567 (2002).

    Article  Google Scholar 

  23. G. D. Chimitdorzhieva, R. A. Egorova, E. Yu. Mil’kheev, and Yu. B. Tsybenov, “Carbon flux in steppe ecosystems (the case of southern Transbaikalia),” Rastit. Mir Aziat. Ross. 2(6), 33–39 (2010).

    Google Scholar 

  24. ü. Rannik, I. Mammarella, P. Keronen, and T. Vesala, “Vertical advection and nocturnal deposition of ozone over a boreal pine forest,” Atmos. Chem. Phys. 9, 2089–2095 (2009). doi: 10.5194/acp-9-2089-2009

    Article  Google Scholar 

  25. G. Tang, X. Li, Y. Wang, et al., “Surface ozone trend details and interpretations in Beijing, 2001–2006,” Atmos. Chem. Phys. 9, 8813–8823 (2009). doi: 10.5194/acp-9-8813-2009

    Article  Google Scholar 

  26. Z. Wu, X. Wang, F. Chen, et al., “Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest,” Atmos. Environ. 45, 2663–2674 (2011). doi: 10.1016/j.atmosenv.2011.02.063

    Article  Google Scholar 

  27. C. A. Pio, M. Feliciano, A. T. Vermeulen, and E. C. Sousa, “Seasonal variability of ozone dry deposition under southern European climate conditions, in Portugal,” Atmos. Environ. 34(2), 195–205 (2000). doi: 10.1016/S1352-2310(99)00276-9

    Article  Google Scholar 

  28. L. Zhang, J. Brook, and R. Vet, “On ozone dry deposition with emphasis on non-stomatal uptake and wet canopies,” Atmos. Environ. 36(30), 4787–4799 (2002). doi: 10.1016/S1352-2310(02)00567-8

    Article  Google Scholar 

  29. A. Tuzet, A. Perrier, B. Loubet, and P. Cellier, “Modelling ozone deposition fluxes: The relative roles of deposition and detoxification processes,” Agric. For. Meteorol. 151, 480–492 (2011). doi: 10.1016/j.agrformet.2010._2010.12.004

    Article  Google Scholar 

  30. R. A. Shumskii and I. B. Belikov, “Observations of turbulent fluxes of ozone in various landscape and season conditions,” Proceedings of the 16th Conference-School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Moscow, 2012), pp. 225–228 [In Russian].

    Google Scholar 

  31. T. A. Markova, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics (Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, 2003).

    Google Scholar 

  32. N. F. Elansky, B. M. Koprov, D. Yu. Sokolov, and N. S. Time, “Turbulent fluxes of ozone over steppe,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 31(1), 109–114 (1995).

    Google Scholar 

  33. J. Moriizumi, K. Nagamine, T. Iida, and Y. Ikebe, “Estimation of areal flux of atmospheric methane in an urban area of Nagoya, Japan, inferred from atmospheric radon-222 data,” Atmos. Environ. 30(10–11), 1543–1549 (1996). doi: 10.1016/1352-2310(95)00481-5

    Article  Google Scholar 

  34. M. Schmidt, R. Graul, H. Sartorius, and I. Levin, “Carbon dioxide and methane in continental Europe: A climatology, and 222radon-based emission estimates,” Tellus 48, 457–473 (1996). doi: 10.1034/j.1600-0889.1994.t01-2-00002.x-i1

    Article  Google Scholar 

  35. C. S. Martens, T. Shay, H. P. Mendlovitz, et al., “Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: Night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods,” Global Change Biol. 10, 618–629 (2004). doi: 10.1111/j.1529-8817.2003.00764.x

    Article  Google Scholar 

  36. A. I. Hirsch, “On using radon-222 and CO2 to calculate regional-scale CO2 fluxes,” Atmos. Chem. Phys. 7, 3737–3747 (2007). doi 10.5194/acp-7-3737-2007

    Article  Google Scholar 

  37. E. A. Oberlander, C. A. M. Brenninkmeijer, P. J. Crutzen, et al., “Trace gas measurements along the Trans-Siberian railroad: The TROICA-5 expedition,” J. Geophys. Res. 107(D14) (2002). doi: 10.1029/2001JD000953

    Google Scholar 

  38. E. V. Berezina, N. F. Elansky, K. B. Moiseenko, et al., “Estimation of nocturnal 222Rn soil fluxes over Russia from TROICA measurements,” Atmos. Chem. Phys. 13, 11695–11708 (2013). doi: 10._5194/acp-13-11695-2013

    Article  Google Scholar 

  39. P. J. Crutzen, G. S. Golitsyn, N. F. Elansky, et al., “Observations of minor impurities in the atmosphere over the Russian territory with the application of a railroad laboratory car,” Dokl. Earth Sci. 351(8), 1289–1293 (1996).

    Google Scholar 

  40. L. V. Panin, N. F. Elansky, I. B. Belikov, et al., “Estimation of reliability of the data on pollutant content measured in the atmospheric surface layer in the TROICA experiments,” Izv., Atmos. Ocean. Phys. 37(Suppl. 1), S81–S91 (2001).

    Google Scholar 

  41. N. F. Elansky, I. B. Belikov, E. V. Berezina, et al., Atmospheric Composition over Northern Eurasia: The TROICA Experiments (Agrospas, Moscow, 2009) [in Russian].

    Google Scholar 

  42. I. B. Belikov, K. A. M. Brenninkmaier, N. F. Elansky, and A. A. Ral’ko, “Methane, carbon monoxide, and carbon dioxide concentrations measured in the atmospheric surface layer over continental Russia in the TROICA experiments,” Izv., Atmos. Ocean. Phys. 42(1), 46–59 (2006).

    Article  Google Scholar 

  43. T. A. Markova, N. F. Elanskii, I. B. Belikov, et al., “Distribution of nitrogen oxides in the atmospheric surface layer over continental regions of Russia,” Izv. Atmos. Ocean. Phys. 40(6), 713–724 (2004).

    Google Scholar 

  44. N. V. Pankratova, N. F. Elanskii, I. B. Belikov, et al., “Ozone and nitric oxides in the surface air over northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47(3), 313–328 (2011).

    Article  Google Scholar 

  45. V. D. Kasimov and D. V. Kasimov, “The state of boreal forests in Russia and their role under conditions of global climate change,” Lesokhoz. Inf., No. 12, 3–12 (2008).

    Google Scholar 

  46. A. I. Utkin, D. G. Zamolodchikov, and O. V. Chestnykh, “Organic carbon in Russian birch forests,” Khvoinye Boreal. Zony, No. 1, 66–76 (2003).

    Google Scholar 

  47. M. V. Glagolev, I. V. Filippov, I. E. Kleptsova, and Sh. Sh. Maksyutov, “Methane emissions from typical bog landscapes in West Siberia,” Data on the Exploration of Russian Soils, Ser. 6 (33) (St. Petersburg, 2009), pp. 57–61 [in Russian].

    Google Scholar 

  48. S. Ullah and T. R. Moore, “Topographic controls of CH4 and N2O fluxes from temperate and boreal forest soils in eastern Canada,” Integr. Land Ecosyst.-Atmos. Process Study Newsl., No. 7, 30–32 (2009).

    Google Scholar 

  49. J. Neirynck, B. Gielen, I. A. Janssens, and R. Ceulemans, “Insights into ozone deposition patterns from decade-long ozone flux measurements over a mixed temperate forest,” J. Environ. Monit. 14, 1684–1695 (2012). doi: 10.1039/C2EM10937A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Berezina.

Additional information

Original Russian Text © E.V. Berezina, N.F. Elansky, K.B. Moiseenko, A.N. Safronov, A.I. Skorokhod, O.V. Lavrova, I.B. Belikov, R.A. Shumsky, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 6, pp. 663–674.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezina, E.V., Elansky, N.F., Moiseenko, K.B. et al. Estimation of biogenic CH4 and CO2 emissions and dry deposition of O3 using 222Rn measurements in TROICA expeditions. Izv. Atmos. Ocean. Phys. 50, 583–594 (2014). https://doi.org/10.1134/S000143381406005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381406005X

Keywords

Navigation