Skip to main content
Log in

Background component of carbon dioxide concentration in the near-surface air

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The data on measurements of carbon dioxide concentrations in the near-surface air in the territory of the European part of Russia using Fourier transform spectroscopy are presented. Analysis of these data showed that temporal variations in CO2 concentrations included ∼18% of relatively high, short-lived concentrations that appear during temperature inversions and fires. The measurement results are separated into the regional natural background CO2 concentration and the anthropogenic admixture. The seasonal component is distinguished in the background CO2 concentration. The maxima and minima of seasonal CO2 variations fall most often within February and July, respectively, at an average amplitude of 20.2 ± 3.8 ppm. The coefficient of pair correlation between seasonal CO2 concentrations and temperature is −0.85. Spectral analysis revealed a large number of composite oscillations of the background CO2 concentration, from 2 to 126 months in period. A simple model using the parameters of these oscillations describes the temporal variations in background CO2 concentration with an error of less than 1%. The anthropogenic admixture of CO2 into the atmosphere consists of a random component and a long-term trend. For 13 years of observations, the anthropogenic admixture was ∼33 ppm at an average growth rate of ∼2.04 ppm/yr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. D. Keeling, T. B. Harris, and E. M. Wilkins, “Concentration of atmospheric carbon dioxide at 500 and 700 millibars,” J. Geophys. Res. 73(14), 4511–4528 (1968).

    Article  Google Scholar 

  2. B. Bolin and W. Bischof, “Variations of the carbon dioxide content of the atmosphere in the Northern Hemisphere,” Tellus 22(4), 431–442 (1970).

    Article  Google Scholar 

  3. Anthropogenic Climate Changes, Ed. by M.I. Budyko and Yu. A. Izrael’ (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  4. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri, A. Reisinger, et al. (IPCC, Geneva, 2007).

    Google Scholar 

  5. J. G. Canadell, C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland, “Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks,” Proc. Natl. Acad. Sci. U. S. A. 104(47), 18866–18870 (2007). doi: 10.1073/pnas.0702737104

    Article  Google Scholar 

  6. D. J. Hofmann, J. H. Butler and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ. 43(12), 2084–2086 (2009).

    Article  Google Scholar 

  7. NOAA/ESRL. http://www.esrl.noaa.gov/gmd/.

  8. F. V. Kashin, V. N. Aref’ev, Yu. I. Baranov, E. L. Baranova, G. I. Bugrim, and N. E. Kamenogradsky, “Variability of the methane content in the atmospheric surface layer and in the atmospheric column,” Izv., Atmos. Ocean. Phys. 40(3), 356–361 (2004).

    Google Scholar 

  9. F. V. Kashin, Data on carbon dioxide measurements in the atmospheric boundary layer over Obninsk, in Proceedings of the International Symposium of CIS countries “Atmospheric Radiation and Dynamics” (St. Petersburg State University, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  10. R. M. Akimenko, V. N. Aref’ev, Yu. I. Baranov, G. I. Bugrim, N. I. Sizov, and L. B. Upenek, “Carbon oxide in the surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 46(1), 45–54 (2010).

    Article  Google Scholar 

  11. F. V. Kashin, “Variations of CO2 mixing ratios in the air near the ground in the European territory of Russia,” J. Environ. Sci. Eng. A 2(9), 531–536 (2013).

    Google Scholar 

  12. V. N. Ivanov, “The use of the high-altitude meteorological mast at the Institute of Experimental Meteorology for atmospheric boundary layer studies,” Tr. Inst. Exp. Meteorol., No. 12, 88–131 (1970).

    Google Scholar 

  13. http://typhoon-tower.obninsk.org/ru/.

  14. S. Page, F. Siegert, J. Rieley, H. Boehm, A. Jaya, and S. Limin, “The amount of carbon released from peat and forest fires in Indonesia during 1997,” Nature 420(6911), 61–65 (2002).

    Article  Google Scholar 

  15. Yu. L. Vorob’ev, V. A. Akimov, and Yu. I. Sokolov, Forest Fires in Russia: The State and Problems (DEKSPRESS, Moscow, 2004) [in Russian].

    Google Scholar 

  16. http://www.fire.uni-freiburg.de/current/globalfire.

  17. N. F. Elansky, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumsky, “Gas composition of the surface air in Moscow during the extreme summer of 2010,” Dokl. Earth Sci. 437(1), 357–362 (2011).

    Article  Google Scholar 

  18. A. A. Vinogradova, E. I. Fedorova, I. B. Belikov, et al., “Temporal variations in carbon dioxide and methane concentrations under urban conditions,” Izv., Atmos. Ocean. Phys. 43(5), 699–611 (2007).

    Article  Google Scholar 

  19. F. V. Kashin, N. N. Paramonova, and N. I. Privalov, “Results of monitoring of carbon dioxide and methane concentrations near the surface at Antarctic station of Novolazarevskaya in 2007–2009,” in Meteorological and Geophysical Studies, Ed. by G. V. Alekseev (Paulsen, Moscow, 2011), pp. 170–177 [in Russian].

    Google Scholar 

  20. K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res. 94, 8549–8565 (1989).

    Article  Google Scholar 

  21. V. A. Rozhkov, Theory of Probability of Random Events, Variables, and Functions with Hydrometeorological Examples (Progress-Pogoda, St. Petersburg, 1996), Vol. 1 [in Russian].

    Google Scholar 

  22. Ye. P. Borisenkov, A. V. Tsvetkov, and J. A. Eddy, “Combined effect of earth orbit perturbations and solar activity on terrestrial insolation,” J. Atmos. Sci. 42(9), 933–940 (1985).

    Article  Google Scholar 

  23. C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plicht, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).

    Article  Google Scholar 

  24. A. S. Monin and Yu. A. Shishkov, “The 5-year cycle of global weather,” 358(1), 128–131 (1998).

    Google Scholar 

  25. Yu. R. Rivin, “The 22-year cycle of geomagnetic activity,” Int. J. Geomagn. Aeron. 1(2), 111–116 (1999).

    Google Scholar 

  26. V. V. Ivanov, “Periodic weather and climate variations,” Phys.-Usp. 45(7), 719–752 (2002).

    Article  Google Scholar 

  27. K. Labitzke, “The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?,” Meteorol. Z. 12(4), 209–216 (2003).

    Article  Google Scholar 

  28. C. K. Chui, An Introduction to Wavelets(Academic Press, San Diego, 1992; Mir, Moscow, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Aref’ev.

Additional information

Original Russian Text © V.N. Aref’ev, N.Ye. Kamenogradsky, F.V. Kashin, A.V. Shilkin, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 6, pp. 655–662.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’ev, V.N., Kamenogradsky, N.Y., Kashin, F.V. et al. Background component of carbon dioxide concentration in the near-surface air. Izv. Atmos. Ocean. Phys. 50, 576–582 (2014). https://doi.org/10.1134/S0001433814060036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814060036

Keywords

Navigation