Skip to main content
Log in

Two-dimensional model of the correlation function approximant of the atmospheric parameter anisotropic fields

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

When fields of atmospheric parameters are statistically described, researchers usually proceed from the assumption that these fields are homogeneous and isotropic. Many one-dimensional models of correlation function approximants of these fields have been obtained based on the assumption on the statistical structure of the atmospheric parameter field. However, not all fields of atmospheric parameters can be considered homogeneous and isotropic. The anisotropy of the temperature and wind fields in the zonal and meridional directions has been studied and their anisotropy has been qualitatively estimated. The two-dimensional model for an approximant of the correlation function of the atmospheric parameter fields, taking into account the anisotropy effect in the zonal and meridional directions, has been proposed. The geopotential height of different isobaric surfaces has been calculated using an existent homogeneous model for correlation function approximant of atmospheric parameter fields and the proposed two-dimensional model. The values indicating that the interpolation accuracy increases when the proposed two-dimensional model for the correlation function approximant is used, since the morphology of atmospheric parameter fields is more adequately taken into account in the proposed model, have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Kazakevich, Basics of the Theory of Random Functions and Its Applications to Hydrometeorology (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  2. L. S. Gandin, Objective Analysis of Meteorological Fields (Gidrometeoizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  3. L. S. Gandin and V. P. Boltenkov, “On the technique to studying the three-dimensional macrostructure of meteorological fields,” Tr. Gl. Geofiz. O-va. im. A.I. Voeikova, No. 165, 5–15 (1964).

    Google Scholar 

  4. L. S. Gandin and R. L. Kagan, Statistical Methods Meteorological Data Interpretation (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  5. C. E. Buell, “Two-point wind correlations on an isobaric surface in a nonhomogeneous non-isotropic atmosphere,” J. Appl. Meteorol. 10(6), 1266–1274 (1971).

    Article  Google Scholar 

  6. Statistical Structure of Meteorological Fields, Ed. by L. S. Gandin, V. I. Zakharieva, and R. Celnai (Budapest, 1976) [in Russian].

    Google Scholar 

  7. G. V. Gruza and R. G. Reitenbakh, Statistics and Analysis of Hydrometeorological Data (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  8. A. A. Isaev, Statistics in Meteorology and Climatology (MGU, Moscow, 1988) [in Russian].

    Google Scholar 

  9. A. Hollingworth and P. Lonnberg, “The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind fields,” Tellus 38A, 111–136 (1986).

    Article  Google Scholar 

  10. P. Lonnberg and A. Hollingworth, “The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and wind errors,” Tellus 38A, 137–161 (1986).

    Article  Google Scholar 

  11. O. A. Aldukhov and R. G. Reitenbakh, “Horizontal correlations between atmospheric temperature and geopotential in the layer from 1000 do 10 hPa,” Meteorol. Gidrol., No. 8, 76–83 (1990).

    Google Scholar 

  12. O. A. Aldukhov, “On the accuracy of the calculation of horizontal correlation functions taking into account the observational coherence” Trudy VNIIGMIMTsD, No. 153, 3–20 (1990).

    Google Scholar 

  13. M. D. Tsyroulnikov, “Proportionality of scales: An isotropy-like property of geophysical fields,” Q. J. Roy. Meteorol. Soc. 127, 2741–2760 (2001).

    Article  Google Scholar 

  14. O. A. Aldukhov and V. A. Gordin, “Three-dimensional correlation functions of basic upper-air parameters,” Izv., Atmos. Ocean. Phys. 37(1), 1–20 (2001).

    Google Scholar 

  15. O. A. Aldukhov and V. A. Gordin, “Estimation of anisotropy of correlation functions of meteorological fields from global upper-air observations,” Izv., Atmos. Ocean. Phys. 41(3), 361–370 (2005).

    Google Scholar 

  16. O. A. Aldukhov, F. L. Bykov, and V. A. Gordin, “Largescale three-dimensional correlation functions for the Earth’s atmosphere,” Yarosl. Pedagog. Vestn. 4(3), 36–43 (2011).

    Google Scholar 

  17. L. D. Pukhtyar, “Optimal interpolation of anisotropic hydrological fields,” in Environmental Management Systems. Collected Papers (Marine Hydrophysical Institute, 2009), pp. 240–243.

    Google Scholar 

  18. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten (On the definition of functions by their values integrated over certain manifolds),” Ber. Säechs. Akad. Wiss. 29, 262–277 (1917).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Alekhin.

Additional information

Original Russian Text © S.G. Alekhin, S.S. Suvorov, V.A. Shemelov, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 6, pp. 647–654.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekhin, S.G., Suvorov, S.S. & Shemelov, V.A. Two-dimensional model of the correlation function approximant of the atmospheric parameter anisotropic fields. Izv. Atmos. Ocean. Phys. 50, 569–575 (2014). https://doi.org/10.1134/S0001433814060024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814060024

Keywords

Navigation