Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 50, Issue 4, pp 350–355 | Cite as

Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations

  • E. M. VolodinEmail author
Article

Abstract

The sensitivities of two climate-model versions—INMCM4 which participated in the Coupled Model Intercomparison Project, Phase 5 (CMIP5), and a new INMCM5 version with increased vertical and horizontal resolutions in its atmospheric block—to the quadrupled concentration of CO2 are studied. When the CO2 concentration is quadrupled, the equilibrium increase in surface temperature amounts to about 4.2 K for INMCM4, which is lower than that for other models that participated in the CMIP5. When the CO2 concentration increases, the cloud radiative forcing in the model decreases; in this case, one portion of this decrease occurs during the first year after the concentration of CO2 is quadrupled and the other portion almost linearly depends on the value of global warming. The results of additional numerical experiments with the model show that a rapid decrease in cloud-radiative forcing results from variations in stratification in the atmospheric surface boundary layer and associated increased cloudiness. The portion of a linear decrease in cloud-radiative forcing with increased temperature is associated with an increase in the water content of model clouds at higher temperatures. The elimination of these two mechanisms allows one to increase the model sensitivity to the quadrupled concentration of CO2 up to 5.2 K.

Keywords

model climate sensitivity carbon dioxide forcing cloudiness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Meehl, T. F. Stocker, W. D. Collins, P. Friedlingstain, A. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. Raper, I. Watterson, A. Weaver, Z. Zhao, et al., “Global climate projections,” in Climate Change 2007. The Physical Science Basis (Cambridge Univ. Press, Cambridge, 2007), pp. 748–845.Google Scholar
  2. 2.
    S. Bony, R. Colman, V. Kattsov, R. P. Allan, C. S. Bretherton, J. L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M. Webb, “How well do we understand and evaluate climate change feedback processes?,” J. Clim. 19(15), 3445–3482 (2006).CrossRefGoogle Scholar
  3. 3.
    E. M. Volodin, “Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models,” Izv., Atmos. Ocean. Phys. 44(3), 288–299 (2008).CrossRefGoogle Scholar
  4. 4.
    T. Andrews, J. M. Gregory, M. Webb, and K. Taylor, “Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models,” Geophys. Res. Lett. 39(9) (2012). doi: 10.1029/2012GL051607Google Scholar
  5. 5.
    E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46(4), 414–431 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Tolstykh, R. Ibraev, E. Volodin, K. Ushakov, V. Kalmykov, A. Shlyaeva, V. Mizyak, and R. Khabeev, Global Models of the Atmosphere and World Ocean. Algorithms and Supercomputing Technologies (Moscow Univ., Moscow, 2013) [in Russian].Google Scholar
  7. 7.
    J. M. Gregory, W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thore, J. A. Lowe, T. C. Johns, and K. D. Williams, “A new method for diagnosing radiative forcing and climate sensitivity,” Geophys. Res. Lett. 31(3) (2004). doi: 10.1029/2003GL018747Google Scholar
  8. 8.
    R. J. Stouffer and S. Manabe, “Response of a coupled ocean-atmosphere model to increasing atmosphere carbon dioxide: sensitivity to the rate of increase,” J. Clim. 12(8), 2224–2237 (1999).CrossRefGoogle Scholar
  9. 9.
    G. Danabasoglu and P. R. Gent, “Equilibrium climate sensitivity: Is it accurate to use slab ocean model?,” J. Clim. 22(9), 2494–2499 (2009).CrossRefGoogle Scholar
  10. 10.
    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Preprint no. 2086-B98 INM RAS (Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 1998).Google Scholar
  11. 11.
    M. Watanabe, S. Emori, M. Satoh, and H. Miura, “A PDF-based hybrid prognostic cloud scheme for general circulation models,” Clim. Dyn. 33(6), 795–816 (2009).CrossRefGoogle Scholar
  12. 12.
    I. P. Mazin, “On the climatology and physical structure of clouds,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 30(3), 338–344 (1994).Google Scholar
  13. 13.
    E. M. Volodin and N. A. Dianskii, “Simulation of climate changes in the 20th–22nd centuries with a coupled atmosphere-ocean general circulation model,” Izv., Atmos. Ocean. Phys. 42(3), 267–281 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations