Skip to main content
Log in

Tsunami waves of seismic origin: The modern state of knowledge

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review summarizes the concepts of seismogenic tsunami waves. Principles of short-term tsunami forecasting and tsunami recording systems are discussed. The traditional approach to describing tsunami generation by earthquakes is outlined and its drawbacks are analyzed. The main and secondary effects are distinguished which are responsible for the formation of waves by underwater earthquakes. The existing numerical codes of tsunami dynamics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IOC/UNESCO Bull. No. 32, Intergovernmental Oceanographic Commission, Oct. 9, 2012.

  2. J. Nöggerath, R. J. Geller, and V. K. Gusiakov, “Fukushima: The myth of safety, the reality of geoscience,” Bull. At. Sci. 67(5), 37–46 (2011).

    Google Scholar 

  3. V. V. Titov, A. B. Rabinovich, H. O. Mofjeld, R. I. Thomson, and F. I. Gonzalez, “The global reach of the 26 December 2004 Sumatra tsunami,” Science 309(5743), 2045–2048 (2005).

    Google Scholar 

  4. B. W. Levin, V. M. Kaistrenko, A. V. Rybin, M. A. Nosov, T. K. Pinegina, N. G. Razzhigaeva, E. V. Sasorova, K. S. Ganzei, T. N. Ivel’skaya, E. A. Kravchunovskaya, S. V. Kolesov, Yu. V. Evdokimov, J. Bourgeois, B. MacInnes, and B. Fitzhugh, “Manifestations of the tsunami on November 15, 2006, on the central Kuril Islands and results of the runup heights modeling,” Dokl. Earth Sci. 419(2), 335–338 (2008).

    Google Scholar 

  5. B. T. MacInnes, T. K. Pinegina, J. Bourgeois, N. G. Razzhigaeva, V. M. Kaistrenko, and E. A. Kravchunovskaya, “Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands,” Pure Appl. Geophys. 166(1–2), 9–36 (2009).

    Google Scholar 

  6. T. N. Ivel’skaya, G. V. Shevchenko, and V. N. Khramushin, “The Chilen tsunami of February 27, 2010: checking the state of the warning system,” Probl. Anal. Riska 7(2), 34–47 (2010).

    Google Scholar 

  7. G. Shevchenko, T. Ivelskaya, A. Loskutov, and A. Shishkin, “The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia,” Pure Appl. Geophys. 170(9–10), 1511–1527 (2013). doi: 10.1007/s00024-012-0562-9

    Google Scholar 

  8. V. Kaistrenko, N. Razjigaeva, A. Kharlamov, and A. Shishkin, “Manifestation of the 2011 Great Tohoku Tsunami on the coast of the Kuril Islands: A tsunami with ice,” Pure Appl. Geophys. 170(6–8), 1103–1114 (2013). doi: 10.1007/s00024-012-0546-9

    Google Scholar 

  9. T. S. Murty, Seismic Sea Waves-Tsunamis (Dept. of Fisheries and the Environment, Fisheries and Marine Service, Ottawa, 1977; Gidrometeoizdat, Leningrad, 1981).

    Google Scholar 

  10. E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (Inst. Appl. Phys., RAS, Nizhni Novgorod, 1996) [in Russian].

    Google Scholar 

  11. E. N. Pelinovskii, Nonlinear Dynamics of Tsunami Waves (Inst. Appl. Phys., USSR Acad. Sci., Nizhni Novgorod, 1982) [in Russian].

    Google Scholar 

  12. An. G. Marchuk, L. B. Chubarov, and Yu. I. Shokin, Numerical Modeling of Tsunami Waves (Nauka, SB RAS, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  13. B. W. Levin and M. A. Nosov, Physics of Tsunamis and Kindred Phenomena in Ocean (Janus-K, Moscow, 2005) [in Russian].

    Google Scholar 

  14. E. Bryant, Tsunami: The Underrated Hazard (Springer, Berlin-Heidelberg, 2008).

    Google Scholar 

  15. B. W. Levin and M. A. Nosov, Physics of Tsunamis (Springer, 2009).

    Google Scholar 

  16. S. L. Solov’ev and Ch. N. Go, Directory of Tsunamis on the Eastern Coast of the Pacific (1513–1968) (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  17. S. L. Solov’ev and Ch. N. Go, Directory of Tsunamis on the Western Coast of the Pacific (173–1968) (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  18. S. L. Solov’ev, Ch. N. Go, and Kh. S. Kim, Directory of Tsunamis in the Pacific 1969–1982 (MGK AN SSSR, Moscow, 1986) [in Russian].

    Google Scholar 

  19. S. L. Solov’ev, Ch. N. Go, Kh. S. Kim, O. N. Solov’eva, and N. A. Shchetnikov, Tsunamis in the Mediterranean Sea from 2000 BC to 1991 AD (Nauchnyi mir, Moscow, 1997) [in Russian].

    Google Scholar 

  20. T. Yamashita and R. Sato, “Generation of tsunami by a fault model,” J. Phys. Earth 22, 415–440 (1974).

    Google Scholar 

  21. E. A. Okal, “Seismic parameters controlling far-field tsunami amplitudes: a review,” Nat. Hazards 1, 67–96 (1988).

    Google Scholar 

  22. S. F. Dotsenko and S. L. Solov’ev, “On the role of residual displacements of oceanic bottom in the generation of tsunamis by underwater earthquakes,” Okeanologiya 35(1), 25–31 (1995).

    Google Scholar 

  23. V. K. Gusiakov, “Relationship of tsunami intensity to source earthquake magnitude as retrieved from historical data,” Pure Appl. Geophys. 168, 2033–2041 (2011).

    Google Scholar 

  24. M. A. Nosov and N. K. Shelkovnikov, “The excitation of dispersive tsunami waves by piston and membrane floor motions,” Izv., Atmos. Ocean. Phys. 33(1), 133–139 (1997).

    Google Scholar 

  25. Operational users guide for the Pacific tsunami warning and mitigation system (PTWS), IOC Tech. Ser. No. 87, UNESCO/IOC, 2009.

  26. A. A. Poplavskii, L. N. Poplavskaya, A. I. Spirin, Yu. Yu. Permikin, and T. V. Nagornykh, “An improved magnitude—geographical criterion of tsunami hazard,” Vulkanol. Seismol., No. 1, 65–74 (2009).

    Google Scholar 

  27. A. V. Bolshakova and M. A. Nosov, “Parameters of tsunami source versus earthquake magnitude,” Pure Appl. Geophys. 168, 2023–2031 (2011). doi: 10.1007/s00024-011-0285-3

    Google Scholar 

  28. E. A. Kulikov, P. P. Medvedev, and S. S. Lappo, “Satellite recording of the Indian Ocean Tsunami on December 26, 2004,” Dokl. Earth Sci. 401(3), 444–449 (2005).

    Google Scholar 

  29. M. Etaya, R. Nakano, H. Shimoda, and T. Sakata, “Detection of ocean wave movements after the Northern Sumatra Earthquake using SPOT images,” in Proceedings of IGARSS’05 (IEEE, 2005), pp. 1420–1423.

    Google Scholar 

  30. E. A. Okal and D. R. MacAyeal, “Seismic recording on drifting icebergs: Catching seismic waves, tsunamis and storms from Sumatra and elsewhere,” Seismol. Res. Lett. 77, 659–671 (2006).

    Google Scholar 

  31. H. Mikada, K. Mitsuzawa, H. Matsumoto, T. Watanabe, S. Morita, R. Otsuka, H. Sugioka, T. Baba, E. Araki, and K. Suyehiro, “New discoveries in dynamics of an M8 earthquake—phenomena and their implications from the 2003 Tokachi-oki Earthquake using a long term monitoring cabled observatory,” Tectonophysics 426, 95–105 (2006).

    Google Scholar 

  32. M. A. Nosov, A. V. Moshentseva, and B. W. Levin, “Residual hydrodynamic fields near a tsunami source,” Dokl. Earth Sci. 438(2), 853–857 (2011).

    Google Scholar 

  33. S. L. Solov’ev, “The problem of tsunami and its significance for Kamchatka and Kuril Islands,” in The Problem of Tsunami (Nauka, Moscow, 1968), pp. 7–50 [in Russian].

    Google Scholar 

  34. V. M. Zhak and S. L. Solov’ev, “Remote registration of tsunami-type weak waves on the shelf of Kuril Islands,” Dokl. Akad. Nauk SSSR 198(4), 816–817 (1971).

    Google Scholar 

  35. An intercomparison of open sea tidal pressure sensors, UNESCO Tech. Pap. Mar. Sci., No. 21 (UNESCO, 1975).

  36. D. E. Cartwright, B. D. Zettler, and B. V. Hamon, “Pelagic tidal constants,” Int. Assoc. Phys. Sci. Oceans, Publ. Sci., No. 30 (IAPSO, 1979).

    Google Scholar 

  37. F. I. Gonzalez, S. N. Bernard, H. B. Milbern, D. Castel, J. Thomas, and J. M. Hemsley, “The Pacific Tsunami Observation Program (PacTOP),” in Proceedings of the IUGG/IOC Int. Tsunami Symp., Vancouver, Canada, August 18–19, 1987 (IUGG, 1988), pp. 3–19.

    Google Scholar 

  38. E. Bernard and C. Meinig, “History and future of deep-ocean tsunami measurements,” in Proceedings of Oceans’11 MTS/IEEE, Kona, IEEE, Piscataway, NJ, September 19–22, 2011, No. 6106894 (2011).

    Google Scholar 

  39. K. Hirata, M. Aoyagi, H. Mikada, K. Kawaguchi, Y. Kaiho, R. Iwase, S. Morita, I. Fujisawa, H. Sugioka, K. Mitsuzawa, K. Suyehiro, H. Kinoshita, and N. Fujiwara, “Real-time geophysical measurements on the deep seafloor using submarine cable in the Southern Kurile subduction zone,” IEEE J. Oceanic Eng. 27(2), 170–181 (2002).

    Google Scholar 

  40. R. Thomson, I. Fine, A. Rabinovich, S. Mihály, E. Davis, M. Heesemann, and M. Krassovski, “Observation of the 2009 Samoa Tsunami by the NEP-TUNE-Canada cabled observatory: test data for an operational regional tsunami forecast model,” Geophys. Res. Lett. 38, L11701 (2011). doi: 10.1029/2011GL04

    Google Scholar 

  41. P. Favali and L. Beranzoli, “EMSO: European multidisciplinary seafloor observatory,” Nucl. Instrum. Methods Phys. Res., Sect. A 602(1), 21–27 (2009).

    Google Scholar 

  42. T. Watanabe, H. Matsumoto, H. Sugioka, H. Mikada, K. Suyehiro, and R. Otsuka, “Offshore monitoring system records recent earthquake off Japan’s northernmost island,” EOS Trans. 85(2), 14 (2004).

    Google Scholar 

  43. M. A. Nosov, S. V. Kolesov, A. V. Ostroukhova, A. B. Alekseev, and B. W. Levin, “Elastic oscillations of the water layer in a tsunami source,” Dokl. Earth Sci. 404(7), 1097–1100 (2005).

    Google Scholar 

  44. M. A. Nosov, S. V. Kolesov, A. V. Denisova, A. B. Alekseev, B. V. Levin, “On the near-bottom pressure variations in the region of the 2003 Tokachi-oki Tsunami source,” Oceanology 47(1), 26–32 (2007).

    Google Scholar 

  45. H. Mikada, K. Mitsuzawa, H. Matsumoto, T. Watanabe, S. Morita, R. Otsuka, H. Sugioka, T. Baba, E. Araki, and K. Suyehiro, “New discoveries in dynamics of an M8 earthquake—Phenomena and their implications from the 2003 Tokachi-oki Earthquake using a long term monitoring cabled observatory,” Tectonophysics 426, 95–105 (2006).

    Google Scholar 

  46. W. Li, H. Yeh, K. Hirata, and T. Baba, “Ocean-bottom pressure variations during the 2003 Tokachi-oki Earthquake,” in Nonlinear Wave Dynamics, Ed. by P. Lynett (World Scientific, Singapore, 2009), pp. 109–126.

    Google Scholar 

  47. T. Ohmachi and S. Inoue, “Dynamic tsunami generation process observed in the 2003 Tokachi-oki, Japan, earthquake,” in Advances in Geosciences, Vol. 18: Ocean Science (World Scientific, Singapore, 2010), pp. 159–168.

    Google Scholar 

  48. A. Bolshakova, S. Inoue, S. Kolesov, H. Matsumoto, M. Nosov, and T. Ohmachi, “Hydroacoustic effects in the 2003 Tokachi-oki Tsunami source,” Russ. J. Earth. Sci 12, ES2005 (2011). doi: 10.2205/2011ES000509

    Google Scholar 

  49. M. Sato, T. Ishikawa, N. Ujihara, S. Yoshida, M. Fujita, M. Mochizuki, and A. Asada, “Displacement above the hypocenter of the 2011 Tohoku-oki earthquake,” Science 332, 1395–1395 (2011).

    Google Scholar 

  50. T. Maeda, T. Furumura, S. Sakai, and M. Shinohara, “Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku Earthquake,” Earth, Planets Space 63(7), 803–808 (2011).

    Google Scholar 

  51. H. Matsumoto, S. Inoue, and T. Ohmachi, “Dynamic response of bottom water pressure due to the 2011 Tohoku Earthquake,” J. Disaster Res. 7(7), 468–475 (2012).

    Google Scholar 

  52. L. Mansinha and D. E. Smylie, “The displacement fields of inclined faults,” Bull. Seismol. Soc. Am. 61, 1433–1440 (1971).

    Google Scholar 

  53. Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75(4), 1135–1154 (1985).

    Google Scholar 

  54. C. Ji, D. J. Wald, and D. V. Helmberger, “Source description of the 1999 Hector Mine, California Earthquake; Part I: Wavelet domain inversion theory and resolution analysis,” Bull. Seismol. Soc. Am. 92(4), 1192–1207 (2002).

    Google Scholar 

  55. G. Shao, X. Li, C. Ji, and T. Maeda, “Focal mechanism and slip history of 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves,” Earth Planets Space 63(7), 559–564 (2011).

    Google Scholar 

  56. Y. Yagi and Y. Fukahata, “Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes,” Geophys. J. Int. 186(2), 711–720 (2011).

    Google Scholar 

  57. T. Lay, Y. Yamazaki, C. J. Ammon, K. F. Cheung, and H. Kanamori, “The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: comparison of deep-water tsunami signals with finite-fault rupture model predictions,” Earth Planets Space 63, 797–801 (2011).

    Google Scholar 

  58. S. Iwasaki, “Experimental study of a tsunami generated by a horizontal motion of a sloping bottom,” Bull. Earthquake Res. Inst., Univ. Tokyo 57, 239–262 (1982).

    Google Scholar 

  59. Y. Tanioka and K. Satake, “Tsunami generation by horizontal displacement of ocean bottom,” Geophys. Res. Lett. 23(8), 861–864 (1996).

    Google Scholar 

  60. K. Kajiura, “The leading wave of a tsunami,” Bull. Earthquake Res. Inst., Univ. Tokyo 41(3), 535–571 (1963).

    Google Scholar 

  61. Y. Tanioka and T. Seno, “Sediment effect on tsunami generation of the 1896 Sanriku Tsunami earthquake,” Geophys. Res. Lett. 28(17), 3389–3392 (2001).

    Google Scholar 

  62. A. B. Rabinovich, L. I. Lobkovsky, I. V. Fine, R. E. Thomson, T. N. Ivelskaya, and E. A. Kulikov, “Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007,” Adv. Geosci. 14, 105–116 (2008).

    Google Scholar 

  63. T. Saito and T. Furumura, “Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory,” Geophys. J. Int. 178, 877–888 (2009).

    Google Scholar 

  64. I. V. Fain and E. A. Kulikov, “Calculation of sea surface displacements in a tsunami source area caused by instantaneous vertical deformation of the seabed due to an underwater earthquake,” Vychisl. Tekhnol. 16(2), 111–118 (2011).

    Google Scholar 

  65. M. A. Nosov and S. V. Kolesov, “Method of specification of the initial conditions for numerical tsunami modeling,” Moscow University Physics Bulletin. 64(2), 208–213 (2009).

    Google Scholar 

  66. M. A. Nosov and S. V. Kolesov, “Optimal initial conditions for simulation of seismotectonic tsunamis,” Pure Appl. Geophys. 168(6–7), 1223–1237 (2011).

    Google Scholar 

  67. M. A. Nosov, S. V. Kolesov, and B. W. Levin, “Contribution of horizontal deformation of the seafloor into tsunami generation near the coast of Japan on March 11, 2011,” Dokl. Earth Sci. 441(1), 1537–1542 (2011).

    Google Scholar 

  68. M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, “Horizontal motions of water in the vicinity of a tsunami source,” Pure Appl. Geophys. 170(9–10), 1647–1660 (2012). doi: 10.1007/s00024-012-0605-2

    Google Scholar 

  69. K. Kajiura, “Tsunami source, energy and directivity of wave radiation,” Bull. Earthquake Res. Inst., Univ. Tokyo 48(5), 835–869 (1970).

    Google Scholar 

  70. J. L. Hammack, “A note on tsunamis: their generation and propagation in an ocean of uniform depth,” J. Fluid Mech. 60, 769–799 (1973).

    Google Scholar 

  71. S. F. Dotsenko, “Influence of residual displacements of oceanic bottom on the efficiency of directed tsunami wave generation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 31(4), 570–576 (1995).

    Google Scholar 

  72. S. F. Dotsenko, “Excitation of tsunamis due to oscillations in a section of the floor,” Izv. Atmos. Ocean. Phys. 32(2), 244–249 (1996).

    Google Scholar 

  73. M. A. Nosov, “Generation of tsunami by oscillations of a sea floor section,” Moscow University Physics Bulletin. 47(1), 110–112 (1992).

    Google Scholar 

  74. M. A. Nosov, “A comparative study of tsunami excited by piston-type and traveling-wave bottom motion” Volc. Seis., 17, 693–698 (1996).

    Google Scholar 

  75. M. A. Nosov, “On the directivity of dispersive tsunami waves excited by piston-type and traveling-wave seafloor motion,” Volc. Seis. 19, 837–844 (1998).

    Google Scholar 

  76. M. A. Nosov, S. V. Mironyuk, and N. K. Shelkovnikov, “Directivity of dispersive tsunami radiation and specific features of sea floor motion in the focus area,” Moscow University Physics Bulletin, 52, 99–102 (1997).

    Google Scholar 

  77. T. Ohmachi, H. Tsukiyama, and H. Matsumoto, “Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting,” Bull. Seismol. Soc. Am. 91(6), 1898–1909 (2001).

    Google Scholar 

  78. M. A. Nosov and S. V. Kolesov, “Elastic oscillations of water column in the 2003 Tokachi-oki Tsunami source: in-situ measurements and 3-D numerical modelling,” Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007).

    Google Scholar 

  79. Y. Yamazaki, K. F. Cheung, and Z. Kowalik, “Depthintegrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up,” Int. J. Numer. Methods Fluids 67, 2081–2107 (2011).

    Google Scholar 

  80. H. Miyoshi, “Generation of the tsunami in compressible water (Part I),” J. Oceanogr. Soc. Jpn. 10, 1–9 (1954).

    Google Scholar 

  81. C. C. L. Sells, “The effect of a sudden change of shape of the bottom of a slightly compressed ocean,” Philos. Trans. Roy. Soc., A 258, 495–528 (1965).

    Google Scholar 

  82. A. I. Janušauskas, “The Cauchy-Poisson theory for compressible fluid,” in Propagation and Runup of Tsunami Waves on a Coast (Nauka, Moscow, 1981), pp. 41–55 [in Russian].

    Google Scholar 

  83. V. V. Zhmur, “Surface phenomena over sources of strong underwater earthquakes,” Issled. Tsunami, No. 2, 62–71 (1987).

    Google Scholar 

  84. M. A. Nosov, “A model for Tsunami generation by bottom movements incorporating water compressibility,” Volc. Seis., 20, 731–741 (1999).

    Google Scholar 

  85. M. A. Nosov, “Tsunami generation in compressible ocean,” Phys. Chem. Earth (B) 24(5), 437–441 (1999).

    Google Scholar 

  86. M. A. Nosov, “Tsunami generation in a compressible ocean by vertical bottom motions,” Izv., Atmos. Ocean. Phys. 36(5), 661–669 (2000).

    Google Scholar 

  87. M. Stiassnie, “Tsunamis and acoustic-gravity waves from underwater earthquakes,” J. Eng. Math. 67, 23–32 (2010).

    Google Scholar 

  88. U. Kadri and M. Stiassnie, “Acoustic-gravity waves interacting with the shelf break,” J. Geophys. Res. 117, C03035 (2012). doi: 10.1029/2011JC007674

    Google Scholar 

  89. W. M. Ewing, I. Tolstoy, and F. Press, “Proposed use of the T phase in tsunami warning systems,” Bull. Seismol. Soc. Am. 40, 53–58 (1950).

    Google Scholar 

  90. S. L. Solov’ev, R. S. Voronin, and S. I. Voronina, “Seismic and hydroacoustic data on T wave (a review of literature),” in The Problem of Tsunami (Nauka, Moscow, 1968), pp. 141–173 [in Russian].

    Google Scholar 

  91. E. A. Okal, P. J. Alasset, O. Hyvernaud, and F. Schindelé, “The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152(2), 416–432 (2003).

    Google Scholar 

  92. H. Tsushima, R. Hino, Y. Tanioka, F. Imamura, and H. Fujimoto, “Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting,” J. Geophys. Res. 117, B03311 (2012). doi: 10.1029/2011JB008877

    Google Scholar 

  93. L. E. Novikova and L. A. Ostrovskii, “The acoustic mechanism of tsunami wave generation,” Okeanologiya 22(5), 693–697 (1982).

    Google Scholar 

  94. M. A. Nosov and S. N. Skachko, “Nonlinear tsunami generation mechanism,” Nat. Hazards Earth Syst. Sci. 1, 251–253 (2001).

    Google Scholar 

  95. M. A. Nosov and S. V. Kolesov, “Nonlinear mechanism of tsunami formation in the ocean in compressible liquid approximation,” Moscow University Physics Bulletin, 60(3), 39–44 (2005).

    Google Scholar 

  96. M. A. Nosov, S. V. Kolesov, and A. V. Denisova, “Contribution of nonlinearity in tsunami generated by submarine earthquake,” Adv. Geosci. 14, 141–146 (2008).

    Google Scholar 

  97. J. L. Hammack, “Baroclinic tsunami generation,” J. Phys. Oceanogr. 10(9), 1455–1467 (1980).

    Google Scholar 

  98. S. F. Dotsenko, “Excitation of tsunami waves in a continuously stratified ocean by displacements of bottoms sections,” Issled. Tsunami, No. 3, 7–17 (1988).

    Google Scholar 

  99. S. F. Dotsenko and Yu. I. Shokin, “Vortex generation in a continuously stratified rotating fluid under shifts of part of the basin bottom,” Vychisl. Tekhnol., No. 1, 13–22 (2001).

    Google Scholar 

  100. A. E. Filonov, “Researchers study tsunami generated by Mexican Earthquake,” Eos, Trans. AGU 78(3), 21–25 (1997).

    Google Scholar 

  101. M. A. Nosov, “Effect of submarine earthquakes on a stratified ocean,” Moscow University Physics Bulletin, 53(4), 23–27 (1998).

    Google Scholar 

  102. L. Kh. Ingel’, “The vortical “trace” of an earthquake in the sea,” Dokl. Earth Sci. 362(7), 1036–1038 (1998).

    Google Scholar 

  103. S. F. Dotsenko, “Effects of earth rotation during tsunami generation by underwater earthquakes,” Izv., Atmos. Ocean. Phys. 35(5), 641–648 (1999).

    Google Scholar 

  104. M. A. Nosov and G. N. Nurislamova, “The potential and vortex traces of a tsunamigenic earthquake in the ocean,” Moscow Univ. Phys. Bull. 67(5), 457–461 (2012).

    Google Scholar 

  105. S. S. Voit, A. N. Lebedev, and B. I. Sebekin, “The formation of a directional tsunami wave in the source of excitation,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17(3), 296–304 (1981).

    Google Scholar 

  106. A. N. Lebedev and B. I. Sebekin, “Generation of a directional tsunami wave in the coastal area,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18(4), 399–417 (1982).

    Google Scholar 

  107. Y. T. Song, L. L. Fu, V. Zlotnicki, C. Ji, V. Hjorleifsdottir, C. K. Shum, and Y. Yi, “The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 tsunami,” Ocean Modell. 20, 362–379 (2008).

    Google Scholar 

  108. N. P. Laverov, L. I. Lobkovskii, B. V. Levin, A. B. Rabinovich, E. A. Kulikov, I. V. Fine, and R. E. Thomson, “The Kuril tsunamis of November 15, 2006, and January 13, 2007: two trans-Pacific events,” Dokl. Earth Sci. 426(3), 658–664 (2009).

    Google Scholar 

  109. F. Løvholt, G. Kaiser, S. Glimsdal, L. Scheele, C. B. Harbitz, and G. Pedersen, “Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami,” Nat. Hazards Earth Syst. Sci. 12, 1017–1028 (2012).

    Google Scholar 

  110. G. S. Pod”yapol’skii, “Excitation of a long gravitational wave in the ocean by a seismic source in the crust,” Izv. Akad. Nauk SSSR, Fiz. Zem., No. 1, 7–24 (1968).

    Google Scholar 

  111. V. K. Gusiakov, “Excitation of tsunami waves and oceanic Rayleigh waves due to underwater earthquake,” in Mathematical Problems of Geophysics (VTs SO AN SSSR, Novosibirsk, 1972), Vol. 3, pp. 250–272 [in Russian].

    Google Scholar 

  112. N. V. Zvolinskii, I. S. Nikitin, and S. Ya. Sekerzh-Zenkovich, “Excitation of tsunami waves and Rayleigh waves by harmonic center of extension,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2, 34–44 (1991).

    Google Scholar 

  113. R. González-González and S. Sekerzh-Zenkovich, “Hydroelastic stationary problem on tsunami waves generation,” Comput. Math. Math. Phys. 44(11), 1982–1991 (2004).

    Google Scholar 

  114. F. G. Panza, F. Romanelli, and T. B. Yanovskaya, “Synthetic tsunami mareograms for realistic oceanic models,” Geophys. J. Int. 141, 498–508 (2000).

    Google Scholar 

  115. A. Balanche, C. Guennou, J. Goslin, and C. Mazoyer, “Generation of hydroacoustic signals by oceanic subseafloor earthquakes: a mechanical model,” Geophys. J. Int. 177, 476–480 (2009).

    Google Scholar 

  116. T. Maeda and T. Furumura, “FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion,” Pure Appl. Geophys. 170(1–2), 109–127 (2013).

    Google Scholar 

  117. I. Aida, “Numerical experiments for the tsunami propagation the 1964 Niigata tsunami and 1968 Tokachi-oki tsunami,” Bull. Earthquake Res. Inst., Univ. Tokyo 47(4), 673–700 (1969).

    Google Scholar 

  118. K. Abe, “A dislocation model of the 1933 Sanriku earthquake consistent with tsunami waves,” J. Phys. Earth 26(4), 381–396 (1978).

    Google Scholar 

  119. F. Imamura, A. C. Yalciner, and G. Ozyurt, Tsunami Modelling Manual (TUNAMI Model) (Tohoku Univ., Sendai, 2006), Revised on April 2006.

    Google Scholar 

  120. V. V. Titov, F. I. González, H. O. Mofjeld, and A. J. Venturato, NOAA time Seattle tsunami mapping project: procedures, data sources, and products. NOAA Technical Memorandum OAR PMEL-124 (2003).

    Google Scholar 

  121. P. L. F. Liu, S. B. Woo, and Y. S. Cho, Computer programs for tsunami propagation and inundation. Tech. Rep. Cornell University (1998).

    Google Scholar 

  122. A. I. Zaytsev, A. G. Chernov, A. C. Yalciner, E. N. Pelinovsky, and A. A. Kurkin, Manual of Tsunami Simulation/Visualization Code NAMI DANCE versions, 4.9, February 2010.

    Google Scholar 

  123. Yu. I. Shokin, V. V. Babailov, S. A. Beisel, L. B. Chubarov, S. V. Eletsky, Z. I. Fedotova, and V. K. Gusyakov, “Mathematical modeling in application to regional tsunami warning systems operations,” in Computational Science and High Performance Computing III, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (Springer, Berlin, 2008), Vol. 101, pp. 52–68.

    Google Scholar 

  124. S. Harig, C. Chaeroni, W. S. Pranowo, and J. Behrens, “Tsunami simulations on several scales: comparison of approaches with unstructured meshes and nested grids,” Ocean Dyn. 58, 429–440 (2008).

    Google Scholar 

  125. Y. Yamazaki, Z. Kowalik, and K. F. Cheung, “Depthintegrated, non-hydrostatic model for wave breaking and run-up,” Int. J. Numer. Methods Fluids 61, 473–497 (2009).

    Google Scholar 

  126. R. J. LeVeque, D. L. George, and M. J. Berger, “Tsunami modelling with adaptively refined finite volume methods,” Acta Numerica 20, 211–289 (2011).

    Google Scholar 

  127. I. V. Fine, A. B. Rabinovich, B. D. Bornhold, R. E. Thomson, and E. A. Kulikov, “The Grand Banks landslidegenerated tsunami of November 18, 1929: preliminary analysis and numerical modeling,” Mar. Geol. 215, 45–57 (2005).

    Google Scholar 

  128. Y. Fujii and K. Satake, “Tsunami source of the 2004 Sumatra-Andaman Earthquake inferred from tide gauge and satellite data,” Bull. Seismol. Soc. Am. 97(1A), S192–S207 (2007).

    Google Scholar 

  129. Z. Kowalik, W. Knight, T. Logan, and P. Whitmore, “The tsunami of 26 December, 2004: numerical modeling and energy considerations,” Pure Appl. Geophys. 164, 379–393 (2007).

    Google Scholar 

  130. D. J. Nicolsky, E. N. Suleimani, and R. A. Hansen, “Validation and verification of a numerical model for tsunami propagation and runup,” Pure Appl. Geophys. 168(6–7), 1199–1222 (2011).

    Google Scholar 

  131. B.-H. Choi, D. C. Kim, E. Pelinovsky, and S. B. Woo, “Three-dimensional simulation of tsunami run-up around conical island,” Coast. Eng. 54, 618–629 (2007).

    Google Scholar 

  132. B.-H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova, and S.-B. Woo, “Two- and three-dimensional computation of solitary wave runup on non-plane beach,” Nonlinear Processes Geophys. 15, 489–502 (2008).

    Google Scholar 

  133. G. Ma, F. Shi, and J. T. Kirby, “Shock-capturing non-hydrostatic model for fully dispersive surface wave processes,” Ocean Modell. 43–44, 22–35 (2012).

    Google Scholar 

  134. D. Burwell, E. Tolkova, and A. Chawla, “Diffusion and dispersion characterization of a numerical tsunami model,” Ocean Modell. 19, 10–30 (2007).

    Google Scholar 

  135. F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Modell. 43–44, 36–51 (2012).

    Google Scholar 

  136. P. Lynett, J. Borrero, P. L.-F. Liu, and C. E. Synolakis, “Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami,” Pure Appl. Geophys. 160, 2119–2146 (2003).

    Google Scholar 

  137. F. Løvholt, G. Pedersen, and S. Glimsdal, “Coupling of dispersive tsunami propagation and shallow water coastal response,” Open Oceanogr. J. 4, 71–82 (2010).

    Google Scholar 

  138. A. Piatanesi, S. Tinti, and E. Bortolucci, “Finite-element simulations of the 28 December 1908 Messina straits (Southern Italy) tsunami,” Phys. Chem. Earth (A) 24, 145–150 (1999).

    Google Scholar 

  139. R. A. Walters, “Design considerations for a finite element coastal ocean model,” Ocean Modell. 15, 90–100 (2006).

    Google Scholar 

  140. Y. J. Zhang and A. M. Baptista, “An efficient and robust tsunami model on unstructured grids. Part I: Inundation benchmarks,” Pure Appl. Geophys. 165, 2229–2248 (2008).

    Google Scholar 

  141. A. Androsov, J. Behrens, and S. Danilov, “Tsunami modelling with unstructured grids. Interaction between tides and tsunami waves,” in Computational Science and High Performance Computing IV, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (Springer, Berlin, 2011), Vol. 115, pp. 191–206.

    Google Scholar 

  142. S. Popinet, “Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami,” Nat. Hazards Earth Syst. Sci. 12, 1213–1227 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nosov.

Additional information

Original Russian Text © M.A. Nosov, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 5, pp. 540–551.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosov, M.A. Tsunami waves of seismic origin: The modern state of knowledge. Izv. Atmos. Ocean. Phys. 50, 474–484 (2014). https://doi.org/10.1134/S0001433814030098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814030098

Keywords

Navigation