Skip to main content
Log in

Data-computing technologies: A new stage in the development of operational oceanography

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An analysis is given of the methods of operational oceanography based on measurements derived from satellite data, observations acquired by drifters and passing vessels, and modern simulations of marine and oceanic circulations. In addition, a historical review is conducted of the previous and current research in this field carried out in the Soviet Union, Ukraine, and Russia. A discussion is given of the principles underlying the design of an effective data-computing system (DCS) for solving the problems of operational oceanography and the implementation of the prototype system for the Black Sea within the joint research project of the Russian Academy of Sciences (RAS) and the National Academy of Sciences of Ukraine (NASU) “The Black Sea as an Ocean Simulation Model.” The effectiveness of applying the multicomponent splitting method in the construction of sea circulation models and specialized DCSs with integrated algorithms of variational assimilation of observational data is estimated. The concept of using the Black Sea as a testing site for innovations is developed. The underlying idea of the concept is the similarity of the Black Sea dynamics with processes in the oceans. The numerical Black Sea circulation models used in the project are described, their development areas are discussed, and the requirements to a Black Sea observing system are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Towards operational oceanography: The global ocean observing system (GOOS). GOOS Rep. 16 IOC/lNF-1028 (Paris, 1996).

  2. Ocean Weather Forecasting: An Integrated View of Oceanography, Ed. by E. P. Chassignet and J. Verron, (Springer, Dordrecht, 2006).

    Google Scholar 

  3. P. Dexter and C. P. Summerhayes, Ocean Observations-the Global Ocean Observing System (GOOS), in Troubled Waters: Ocean Science and Governance, Ed. by D. Pugh and G. Holland, (CUP, Cambridge, 2010), ch. 11, pp. 161–178.

    Google Scholar 

  4. GODAE OceanView Work Plan Final Version Update.V8, 2012. http://www.godae-oceanview.org

  5. G. I. Marchuk, V. P. Dymnikov, G. P. Kurbatkin, and A. S. Sarkisyan, “The Razrezy program and monitoring of the world ocean,” Meteorol. Gidrol., No. 8, 9–17 (1984).

    Google Scholar 

  6. G. I. Marchuk and B. E. Paton, “The Black Sea as a simulation ocean model,” Russ. J. Numer. Anal. Math. Modeling 27(1), 1–4 (2012).

    Article  Google Scholar 

  7. L. M. Brekhovskikh, M. N. Koshlyakov, K. N. Fedorov, L. M. Fomin, and A. D. Yampol’skii, “Polygon hydrophysical experiment in the tropical Atlantic,” Dokl. Akad. Nauk SSSR 198(6), 1434–1439 (1971).

    Google Scholar 

  8. V. V. Knysh, V. A. Moiseenko, A. S. Sarkisyan, and I. E. Timchenko, “Integrated use of measurements on oceanic hydrophysical polygons in four-dimensional analysis,” Dokl. Akad. Nauk SSSR, 252(4), 832–836 (1980).

    Google Scholar 

  9. B. A. Nelepo, G. K. Korotaev, V. S. Suetin, and Yu. V. Terekhin, Ocean Investigations from the Space (Naukova dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  10. B. A. Nelepo and G. K. Korotaev, “Satellite monitoring of the ocean climate,” Meteorol. Gidrol., No. 8, 34–41 (1984).

    Google Scholar 

  11. V. P. Dymnikov, G. K. Korotaev, and V. Ya. Galin, Requirements to Data Structure and Accuracy of Studies in the Razrezy program. Results of Science and Technology. Series: Atmosphere, Ocean, Space-the “Razrezy” program (VINITI, Moscow, 1984) [in Russian].

    Google Scholar 

  12. V. Z. Dykman, N. A. Grekov, V. V. Prokhorenko, V. V. Kholkin, and Yu. I. Shapovalov, RF Patent No. 1354571 (1986).

    Google Scholar 

  13. Numerical Models and Results of Calibrating Calculations of Currents in the Atlantic. Series: Atmosphere, Ocean, Space-the “Razrezy” program, Ed. by A. S. Sarkisyan and Yu. L. Demin (IVM, Moscow, 1992) [in Russian].

    Google Scholar 

  14. V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, “Assimilation of hydrological observation data for calculating currents in seas and oceans,” Izv., Atmos. Ocean. Phys. 48(1), 57–73 (2012).

    Article  Google Scholar 

  15. V. V. Knysh, O. A. Saenko, and A. S. Sarkisyan, “Method of assimilation of altimeter data and its test in the tropical North Atlantic,” Russ. J. Numer. Anal. Math. Modelling 11(5), 333–409 (1996).

    Google Scholar 

  16. G. I. Marchuk, J. Suendermann, and V. B. Zalesny, “Mathematical modeling of marine and oceanic currents,” Russ. J. Numer. Anal. Math. Modelling 16(4), 331–362 (2001).

    Google Scholar 

  17. Study and Simulation of Hydrophysical Processes in the Black Sea, Ed. by S. P. Levikov (Gidrometeoizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  18. S. G. Demyshev and G. K. Korotaev, “Numerical experiments on four-dimensional observational data assimilation in the Black Sea in June of 1984 using a numerical energy-balanced model,” Morsk. Gidrofiz. Zh., No. 3, 21–33 (1992).

    Google Scholar 

  19. B. A. Nelepo, G. K. Korotaev, and V. N. Manovitskii, “Development of a diagnostic and prognostic system of the ocean state as an important automation problem in oceanography,” Morsk. Gidrofiz. Zh., No. 3, 44–49 (1985) [in Russian].

    Google Scholar 

  20. G. K. Korotaev, T. Oguz, V. L. Dorofeev, S. G. Demyshev, and A. I. Kubryakov, “Development of Black Sea nowcasting and forecasting system,” Ocean Sci. 7(5), 629–649 (2011).

    Article  Google Scholar 

  21. G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesny, Mathematical Models in Geophysical Hydrodynamics and Numerical Methods of Their Implementation (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  22. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  23. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, F. V. Gusev, N. A. Diansky, E. M. Volodin, and R. Tamsalu, “Numerical modeling of the large-scale ocean circulation on the base of multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modeling 25(6), 581–609 (2010).

    Google Scholar 

  24. V. B. Zalesny, “Mathematical model of sea dynamics in a σ-coordinate system,” Russ. J. Numer. Anal. Math. Modeling 20(1), 97–113 (2005).

    Article  Google Scholar 

  25. M. Wenzel and V. B. Zalesny, “Data assimilation in a one-dimensional heat convection-diffusion model in the ocean,” Izv., Atmos. Ocean. Phys. 32(5), 564–579 (1996).

    Google Scholar 

  26. G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems (Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  27. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976) [In Russian].

    Google Scholar 

  28. J.-L. Lions, Contróle optimal des systèmes gouvernés par des équations aux dérivées partielles (Optimal Control of Systems Governed by Partial Differential Equations) (Dunod, Paris, 1968).

    Google Scholar 

  29. G. I. Marchuk and V. V. Penenko, “Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment,” in Modelling and Optimization of Complex Systems: Proc. of the IFIP-TC7 Working Conf., Ed. by G. I. Marchuk (Springer, New York, 1978), pp. 240–252.

    Google Scholar 

  30. F.-X. Le Dimet and O. Talagrand, “Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects,” Tellus 38A, 97–110 (1986).

    Article  Google Scholar 

  31. G. I. Marchuk and V. B. Zalesny, “A numerical technique for geophysical data assimilation problem using Pontryagin’s principle and splitting-up method,” Russ. J. Numer. Anal. Math. Modelling 8(4), 311–326 (1993).

    Google Scholar 

  32. V. I. Agoshkov, V. M. Ipatova, V. B. Zalesny, E. I. Parmuzin, and V. P. Shutyaev, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv., Atmos. Ocean. Phys. 46(6), 677–712 (2010).

    Article  Google Scholar 

  33. V. I. Agoshkov and V. B. Zalesny, “Variational data assimilation technique in mathematical modeling of ocean dynamics,” Pure Appl. Geophys. 169(3), 555–578 (2012).

    Article  Google Scholar 

  34. J. Blum, F.-X. Le Dimet, and I. M. Navon, “Data assimilation for geophysical fluids,” in Computational Methods for the Atmosphere and the Oceans. Volume 14: Special Volume (Handbook of Numerical Analysis), Ed. by P. G. Ciarlet, (Elsevier, 2008), 377–434.

    Google Scholar 

  35. G. Marchuk, V. Shutyaev, and V. Zalesny, “Approaches to the solution of data assimilation problems,” in Optimal Control and Partial Differential Equations, Ed. by J. L. Menaldi, E. Rofman, and A. Sulem (IOS Press, Amsterdam, 2001).

    Google Scholar 

  36. F. P. Vasil’ev, Numerical Methods for Solving Extremum Problems (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  37. G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, and N. A. Diansky, “Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation,” Pure Appl. Geophys. 162, 1407–1429 (2005).

    Article  Google Scholar 

  38. V. B. Zalesny and A. V. Gusev, “Mathematical model of the world ocean dynamics with algorithms of variational assimilation of temperature and salinity fields,” Russ. J. Numer. Anal. Math. Modelling 24(2), 171–190 (2009).

    Google Scholar 

  39. V. B. Zalesny, A. V. Gusev, and S. N. Moshonkin, “Numerical hydrodynamic model of the Black and Azov seas with variational initialization of temperature and salinity,” Izv., Atmos. Ocean. Phys. 49(6) (2013).

    Google Scholar 

  40. V. P. Shutyaev, Control Operators and Iterative Algorithms in Variational Data Assimilation Problems (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  41. G. I. Marchuk, “The problem of thermocline formation in the ocean,” in Some Problems of Mathematics and Mechanics (Nauka, Novosibirsk, 1970), pp. 190–197 [in Russian].

    Google Scholar 

  42. V. A. Vodyanitskii, “The Main Water Exchange and Salinity Formation in the Black Sea,” Tr. Sevastop. Biol. Stn. 6, 386–432 (1948).

    Google Scholar 

  43. S. N. Bulgakov and G. K. Korotaev, “One-dimensional model of vertical stratification of the Black Sea,” in Integrated Study of the Black Sea (MGI AN USSR, Sevastopol, 1984), pp. 41–49 [in Russian].

    Google Scholar 

  44. L. I. Ivanov and A. S. Samodurov, “The role of lateral fluxes in ventilation of the Black Sea,” J. Mar. Syst. 31(1–3), 159–174 (2001).

    Article  Google Scholar 

  45. V. V. Knysh, S. G. Demyshev, and G. K. Korotaev, “A technique for the reconstruction of climatic seasonal circulation of the Black Sea on the basis of hydrological data assimilation in the model,” Morsk. Gidrofiz. Zh., No. 2, 36–52 (2002).

    Google Scholar 

  46. J. A. Whitehead, G. K. Korotaev, and S. N. Bulgakov, “Convective Circulation in Mesoscale Abyssal Basins,” Geophys. and Astrophys. Fluid Dynamics 89, 169–203 (1998).

    Article  Google Scholar 

  47. G. K. Korotaev, V. V. Knysh, and A. I. Kubryakov, “Formation of the cold intermediate layer as revealed by 1971–1993 reanalysis of hydrophysical fields of the Black Sea,” Izv., Atmos. Ocean. Phys. 49(6) (2013).

    Google Scholar 

  48. M. A. Latif, E. Özsoy, T. Oğuz, and Ü. Ünlüata, “Observations of the Mediterranean inflow into the Black Sea,” Deep-Sea Res. 38(Suppl. 2), S711–S723 (1991).

    Article  Google Scholar 

  49. G. K. Korotaev, O. A. Saenko, and C. R. Koblinsky, “Satellite altimetry observations of the Black Sea level,” J. Geophys. Res. 106(C1), 917–933 (2001).

    Article  Google Scholar 

  50. P. M. Poulain, R. Barbanti, S. Motyzhev, and A. Zatsepin, “Statistical description of the Black Sea nearsurface circulation using drifters in 1999–2003,” Deep-Sea Res., Part I 52(12), 2250–2274 (2005).

    Article  Google Scholar 

  51. T. Oguz and S. Besiktepe, “Observations on the Rim current structure, CIW formation and transport in the western Black Sea,” Deep Sea Res., Part I 46, 1733–1753 (1999).

    Article  Google Scholar 

  52. G. K. Korotaev, T. Oguz, and S. Riser, “Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats,” Deep-Sea Res., Part II 53, 1901–1910 (2006).

    Article  Google Scholar 

  53. A. S. Blatov, N. P. Bulgakov, V. A. Ivanov, A. N. Kosarev, and V. S. Tuzhilkin, Variability of Hydrophysical Fields of the Black Sea (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  54. G. K. Korotaev, T. Oguz, A. Nikiforov, and C. R. Koblinsky, “Seasonal, interannual and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data,” J. Geophys. Res. 108(C4), 259–265 (2003).

    Google Scholar 

  55. T. Oguz, D. G. Aubrey, V. S. Latun, E. Demirov, L. Koveshnikov, H. I. Sur, V. Diaconu, S. Besiktepe, M. Duman, R. Limeburner, and V. Eremeev, “Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack’91,” Deep Sea Res., Part I 41, 603–628 (1994).

    Article  Google Scholar 

  56. A. Zatsepin, A. Ginzburg, A. Kostianoy, V. Kremenetskiy, V. Krivosheya, S. Stanichny, and P.-M. Poulain, “Observations of Black Sea mesoscale eddies and associated horizontal mixing,” J. Geophys. Res. 108(C8), 3246 (2003).

    Article  Google Scholar 

  57. E. V. Stanev, P. Y. Le Traon, and E. L. Peneva, “Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea,” J. Geophys. Res. 105, 17203–17221 (2000).

    Article  Google Scholar 

  58. A. G. Zatsepin, A. A. Kondrashov, A. O. Korzh, et al., “Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology 51(4), 554–567 (2011).

    Article  Google Scholar 

  59. S. Karimova, “Eddy statistics for the Black Sea by visible and infrared remote sensing,” in Remote Sensing of the Changing Oceans, Ed. by D. L. Tang (Springer, Berlin-Heidelberg, 2011), pp. 61–75. doi 10.1007/978-3-642-16541-2-4

    Chapter  Google Scholar 

  60. G. K. Korotaev and E. Huot, F.-X. Le Dimet, I. Herlin, S. V. Stanichny, D. M. Solovyev, and L. Wu, “Application of the adjoint equation technique to the processing of ocean images,” Remote Sens. Environ. 112(4), 1464–1475 (2008).

    Article  Google Scholar 

  61. S. N. Moshonkin, R. Tamsalu, and V. B. Zalesny, “Modeling sea dynamics and turbulent zones on high spatial resolution nested grids,” Oceanology 47(6), 747–757 (2007).

    Article  Google Scholar 

  62. N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. V. Korshenko, “Computation of currents and pollution transport in coastal waters of Greater Sochi on the basis of numerical modeling,” Izv., Atmos. Ocean. Phys. 49(6) (2013).

    Google Scholar 

  63. A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskii, S. C. Nizov, V. B. Piotukh, V. A. Solov’ev, D. A. Shvoev, A. L. Tsibul’skii, S. B. Kuklev, O. N. Kukleva, L. V. Moskalenko, O. I. Podymov, V. I. Baranov, A. A. Kondrashov, A. O. Korzh, A. A. Kubryakov, D. M. Solov’ev, and S. V. Stanichnyi, “The sub-satellite hydrophysical polygon of IO RAN in the continental slope area of the Black Sea,” Izv., Atmos. Ocean. Phys. 50 (2014) (In press).

  64. A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskii, V.B. Piotukh, S. B. Kuklev, L. V. Moskalenko, O. I. Podymov, V. I. Baranov, A. O. Korzh, and S. V. Stanichnyi, “Some results of analysis of data obtained in the IO RAN hydrophysical polygon in 2012,” Izv., Atmos. Ocean. Phys. 49(6) (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Zalesny.

Additional information

Original Russian Text © G.I. Marchuk, B.E. Paton, G.K. Korotaev, V.B. Zalesny, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 6, pp. 629–642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchuk, G.I., Paton, B.E., Korotaev, G.K. et al. Data-computing technologies: A new stage in the development of operational oceanography. Izv. Atmos. Ocean. Phys. 49, 579–591 (2013). https://doi.org/10.1134/S000143381306011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381306011X

Keywords

Navigation