Skip to main content
Log in

Simulating indirect effects that thunderstorm activity has on atmospheric temperature

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A coupled chemistry-climate model of both lower and middle atmospheres is used to study variations in the temperature of the atmosphere when its chemical composition is disturbed due to thunderstorm activity, which results in variations in its local heating and cooling and in atmospheric heat and mass transfer. The results of model calculations showed that, due to variations in the lightning production of nitrogen oxides and resulting variations in the concentrations of atmospheric gases, the temperature varies mostly in the lower and middle stratospheres over both tropical and polar regions. On average, over a period of several decades, this effect quantitatively amounts to a few tenths of a degree; however, it can reach a few degrees at heights of the lower stratosphere over Polar regions. The level of the statistical significance of estimates exceeds 0.95 almost within all height ranges for the global lightning production (exceeding 6 TgN/year).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Noxon, “Atmospheric nitrogen fixation by lightning,” Geophys. Res. Lett. 3(8), 463–465 (1976).

    Article  Google Scholar 

  2. G. W. Griffing, “Ozone and oxides of nitrogen production during thunderstorms,” J. Geophys. Res. 82(6), 943–950 (1977).

    Article  Google Scholar 

  3. U. Schumann and H. Huntrieser, “The global lightning-induced nitrogen oxides source,” Atmos. Chem. Phys. 7, 3823–3907 (2007).

    Article  Google Scholar 

  4. G. P. Brasseur, J. J. Orlando, and G. S. Tyndal, Atmospheric Chemistry and Global Change (Oxford University Press, Oxford, 1999).

    Google Scholar 

  5. S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the variability of gas and aerosol components in the stratosphere of polar regions,” Izv., Atmos. Ocean. Phys. 46(3), 265–280 (2010).

    Article  Google Scholar 

  6. S. P. Smyshlyaev, M. A. Geller, and V. A. Yudin, “Sensitivity of model assessments of high-speed civil transport effects on stratospheric ozone resulting from uncertainties in the NOx production from lightning,” J. Geophys. Res. 104(D21), 26401–26417 (1999). doi 10.1029/1999JD900820

    Article  Google Scholar 

  7. S. P. Smyshlyaev, E. A. Mareev, and V. Ya. Galin, “Simulation of the impact of thunderstorm activity on atmospheric gas composition,” Izv., Atmos. Ocean. Phys. 46(4), 451–467 (2010).

    Article  Google Scholar 

  8. H. Levy II, W. J. Moxim, and P. S. Kasibhatla, “A global three-dimensional time-dependent lightning source of tropospheric NO,” J. Geophys. Res. 101(D17), 22911–22922 (1996).

    Article  Google Scholar 

  9. C. Price, J. Penner, and M. Prather, “NOx from lightning: 2. constraints from the global atmospheric electric circuit,” J. Geophys. Res. 102, 5943–5951 (1997).

    Article  Google Scholar 

  10. A. J. DeCaria, K. E. Pickering, G. L. Stenchikov, J. R. Scala, J. L. Stith, J. E. Dye, B. A. Ridley, and P. Laroche, “A cloud-scale model study of lightning-generated NOx in an individual thunderstorm during STERAO-A,” J. Geophys. Res. 105, 11601–11616 (2000).

    Article  Google Scholar 

  11. M. G. Lawrence, W. L. Chameides, P. S. Kasibhatla, H. Levy II, and W. Moxim, “Lightning and atmospheric chemistry: the rate of atmospheric NO production,” in Handbook of Atmospheric Electrodynamics, Ed. by H. Volland (CRC Press, Boca Raton, Florida, 1995), pp. 189–202.

    Google Scholar 

  12. M. K. W. Ko, M. B. McElroy, D. K. Weisenstein, and N. D. Sze, “Lightning: A possible source of stratospheric odd nitrogen,” J. Geophys. Res. 91, 5395–5404 (1986).

    Article  Google Scholar 

  13. C. Price and D. Rind, “A simple lightning parameterization for calculating global lightning distributions,” J. Geophys. Res. 97, 9919–9933 (1992).

    Article  Google Scholar 

  14. A. J. DeCaria, K. E. Pickering, G. L. Stenchikov, and L. E. Ott, “Lightning-generated NOx and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm,” J. Geophys. Res. 110(D14303) (2005). doi 10.1029/2004JD005556

    Google Scholar 

  15. D. J. Allen and K. E. Pickering, “Evaluation of lightning flash rate parameterizations for use in a global chemical transport model,” J. Geophys. Res. 107(D23), 4711 (2002). doi 10.1029/2002JD002066

    Article  Google Scholar 

  16. A. S. Elokhov and A. N. Gruzdev, “Nitrogen dioxide column content and vertical profile measurements at the Zvenigorod research station,” Izv., Atmos. Ocean. Phys. 36(6), 763–777 (2000).

    Google Scholar 

  17. A. S. Elokhov and A. N. Gruzdev, “Estimation of tropospheric and stratospheric NO2 from spectrometric measurements of column NO2 abundances,” in Proc. SPIE 2506, 444–454 (1995).

    Google Scholar 

  18. J. D. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, 1999).

    Google Scholar 

  19. V. Eyring, N. R. P. Harris, M. Rex, et al., “A strategy for process-oriented validation of coupled chemistry-climate models,” Bull. Am. Meteorol. Soc. 86, 1117–1133 (2005).

    Article  Google Scholar 

  20. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined chemistry-climate model of the atmosphere,” Izv., Atmos. Ocean. Phys. 43(4), 399–412 (2007).

    Article  Google Scholar 

  21. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Preprint No. 2086-B98 INM RAS (Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 1998).

  22. S. P. Smyshlyaev, V. Ya. Galin, P. A. Zimenko, and A. P. Kudryavtsev, “Simulation of the effect of changes in solar-activity-induced spectral fluxes of solar radiation on atmospheric ozone content,” Meteorol. Gidrol., No. 8, 25–37 (2005).

    Google Scholar 

  23. K. Pickering, E. Y. Wang, W. K. Tao, C. Price, and J.-F. Muller, “Vertical distribution of lightning NOx for use in regional and global chemical transport models,” J. Geophys. Res. 103, 31203–31216 (1998).

    Article  Google Scholar 

  24. Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring Project, Report No. 47 (World Meteorological Organization, Geneva, Switzerland, 2007).

  25. H. A. Panofsky and G. W. Brier, Some Applications of Statistics to Meteorology (Pennsylvania State University, Pennsylvania, 1958).

    Google Scholar 

  26. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (John Wiley and Sons, New York, 1998).

    Google Scholar 

  27. S. Solomon, R. Portmann, R. Sanders, J. Daniel, W. Madsen, B. Bartram, and E. Dutton, “On the role of nitrogen dioxide in the absorption of solar radiation,” J. Geophys. Res. 104(D10), 12047–12058 (1999). doi 10.1029/1999JD900035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Smyshlyaev.

Additional information

Original Russian Text © S.P. Smyshlyaev, E.A. Mareev, V.Ya. Galin, P.A. Blakitnaya, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 5, pp. 550–564.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyshlyaev, S.P., Mareev, E.A., Galin, V.Y. et al. Simulating indirect effects that thunderstorm activity has on atmospheric temperature. Izv. Atmos. Ocean. Phys. 49, 504–518 (2013). https://doi.org/10.1134/S0001433813050137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813050137

Keywords

Navigation