Skip to main content
Log in

Peculiarities of the disturbance in the mesosphere composition and optical emissions caused by high-altitude discharges

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The suggested equation system, including 267 chemical reactions and corresponding parametrizations of disturbances of the electric field and electron temperature, describes the dynamics of the mesosphere composition under the influence of high-altitude discharges (sprites and halos). Based on this system, the ionic disturbance, neutral components, and optical emissions of the night mesosphere caused by the sprites were modeled for a height of 77–85 km. Most attention was paid to the dynamics of disturbances of concentrations of electrons and O +2 , NO+, H3O+, H5O +2 , and N +2 typical of the studied heights. The major chemical reactions leading to the disturbance of ionic contents are determined and the relaxation dynamics of the chemical components is reviewed. The account of the excited atoms and molecules of nitrogen and oxygen allowed us to model the radiation of the sprite flash, calculate the volumetric velocity of the photon emission, and study the influence of the sprite on the neutral components of the mesosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Sentman and E. M. Wescott, “Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere,” Phys. Plasmas 2, 2514–2522 (1995).

    Article  Google Scholar 

  2. T. Neubert, “On sprites and their exotic kin,” Science 300(5620), 747–749 (2003).

    Article  Google Scholar 

  3. E. Fullekrug, E. Mareev, and M. Rycroft, Sprites, Elves and Intense Lightning Discharges (Springer, 2006).

    Book  Google Scholar 

  4. V. P. Pasko, “Recent advances in theory of transient luminous events,” J. Geophys. Res. 115, A00E35 (2010).

    Article  Google Scholar 

  5. E. Mishin, “Ozone layer perturbation by a single blue jet,” Geophys. Res. Lett. 24(15), 1919–1922 (1997).

    Article  Google Scholar 

  6. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  7. N. V. Smirnova, A. N. Lyakhov, and S. I. Kozlov, “Lower stratosphere response to electric field pulse,” Int. J. Geomagn. Aeron. 3(3), 281–287 (2003).

    Google Scholar 

  8. Y. Hiraki, L. Tong, H. Fukunishi, et al., “Generation of metastable oxygen atom O(1D) in sprite halos,” Geophys. Res. Lett. 31(1), L14105 (2004).

    Article  Google Scholar 

  9. D. D. Sentman, H. C. Stenbaek-Nielsen, M. G. McHarg, and J. S. Morrill, “Plasma chemistry of sprite streamers,” J. Geophys. Res. 113(D11), D11112 (2008).

    Article  Google Scholar 

  10. S. B. Mende, H. U. Frey, R. R. Hsu, et al., “D region ionization by lightning-induced electromagnetic pulses,” J. Geophys. Res. 110(A11), A11312 (2005).

    Article  Google Scholar 

  11. E. V. Mishin and G. M. Milikh, “Blue jets: Upward lightning,” Space Sci. Rev. 137(1–4), 473–488 (2008).

    Article  Google Scholar 

  12. A. A. Krivolutskii and A. I. Repnev, Influence of Cosmic Factors on the Earth’s Ozone Layer (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  13. E. A. Mareev and S. A. Yashunin, “On conditions of initiation of electric discharges in the middle atmosphere,” Izv., Atmos. Ocean. Phys. 46(1), 69–75 (2010).

    Article  Google Scholar 

  14. F. J. Gordillo-Vázquez, “Air plasma kinetics under the influence of sprites,” J. Phys. D: Appl. Phys. 41(23), 4016 (2008).

    Article  Google Scholar 

  15. A. A. Evtushenko and E. A. Mareev, “Modeling the mesospheric content disturbances induced by high-altitude discharges (sprites),” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 54(2), 123–140 (2011).

    Google Scholar 

  16. A. B. Chen, C.-L. Kuo, Y.-J. Lee, et al., “Global distributions and occurrence rates of transient luminous events,” J. Geophys. Res. 113, A08306 (2008).

    Article  Google Scholar 

  17. M. Stanley, M. Brook, P. Krehbiel, and S. A. Cummer, “Detection of daytime sprites via a unique sprite ELF signature,” Geophys. Res. Lett. 27(6), 871–874 (2000).

    Article  Google Scholar 

  18. V. P. Pasko and H. C. Stenbaek-Nielsen, “Diffuse and streamer regions of sprites,” Geophys. Res. Lett. 29(10), 1440–1444 (2002).

    Article  Google Scholar 

  19. I. A. Kossyi, A. Yu. Kostinskii, and A. A. Matveev, “Plasmochemical processes in a nonequilibrium nitrogen-oxygen mixture,” Tr. Inst. Obshch. Fiz., Ross. Akad. Nauk 47, 37–57 (1994).

    Google Scholar 

  20. R. L. Dowden, C. J. Rodger, and D. Nunn, “Minimum sprite plasma density as determined by VLF scattering,” IEEE Antennas Propag. Mag. 43(2), 12–24 (2001).

    Article  Google Scholar 

  21. V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, and I. A. Nesterov, “Satellite radio probing and radio tomography of the ionosphere,” Phys.-Usp. 53(5), 523–527 (2010).

    Article  Google Scholar 

  22. A. A. Evtushenko and E. A. Mareev, “Generating electric-discharge layers in mesoscale convective systems,” Izv., Atmos. Ocean. Phys. 45(2), 242–252 (2009).

    Article  Google Scholar 

  23. N. Liu, V. P. Pasko, H. U. Frey, et al., “Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements,” J. Geophys. Res. 114(A3), A00E02 (2009).

    Article  Google Scholar 

  24. F. J. Gordillo-Vázquez, “Vibrational kinetics of air plasmas induced by sprites,” J. Geophys. Res. 115(A5), A00E25 (2010).

    Article  Google Scholar 

  25. A. A. Evtushenko, “Modeling the influence of a high altitude discharge on the chemical balance of the mesosphere,” in Earth: Our Changing Planet. Proceedings of the International Union of Geodesy and Geophysics (IUGG) XXIV General Assembly, Perugia, Italy (IUGG, Perugia, 2007), p. 151.

    Google Scholar 

  26. U. Ebert, S. Nijdam, C. Li, et al., “Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning,” J. Geophys. Res. 115(A7), A00E43 (2010).

    Article  Google Scholar 

  27. A. Luque and F. J. Gordillo-Vázquez, “Modeling and analysis of N2 (B 3 Π g) and N2 (C 3 Π u) vibrational distributions in sprites,” J. Geophys. Res. 116(A2), A02306 (2011).

    Article  Google Scholar 

  28. A. D. Danilov and M. N. Vlasov, Photochemistry of Ionized and Excited Particles in the Lower Ionosphere (Gidrometeoizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  29. B. D. Green, M. E. Fraser, W. T. Rawlins, et al., “Molecular excitation in sprites,” Geophys. Res. Lett. 23(16), 2161–2164 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evtushenko.

Additional information

Original Russian Text © A.A. Evtushenko, F.A. Kuterin, E.A. Mareev, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 5, pp. 576–586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evtushenko, A.A., Kuterin, F.A. & Mareev, E.A. Peculiarities of the disturbance in the mesosphere composition and optical emissions caused by high-altitude discharges. Izv. Atmos. Ocean. Phys. 49, 530–540 (2013). https://doi.org/10.1134/S0001433813050034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813050034

Keywords

Navigation