Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 49, Issue 4, pp 347–366 | Cite as

Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system

  • E. M. VolodinEmail author
  • N. A. Diansky
  • A. V. Gusev
Article

Abstract

This paper presents results from a simulation of climate changes in the 19th–21st centuries with the Institute of Numerical Mathematics Climate Model Version 4 (INMCM4) in the framework of the Coupled Model Intercomparison Project, phase 5 (CMIP5). Like the previous INMCM3 version, this model has a low sensitivity of 4.0 K to a quadrupling of CO2 concentration. Global warming in the model by the end of the 21st century is 1.9 K for the RCP4.5 scenario and 3.4 K for RCP8.5. The spatial distribution of temperature and precipitation changes driven by the enhanced greenhouse effect is similar to that derived from the INMCM3 model data. In the INMCM4 model, however, the heat flux to the ocean and sea-level rise caused by thermal expansion are roughly 1.5 times as large as those in the INMCM3 model under the same scenario. A decrease in sea-ice extent and a change in heat fluxes and meridional circulation in the ocean under global warming, as well as some aspects of natural climate variability in the model, are considered.

Keywords

climate changes atmosphere ocean cryosphere global warming greenhouse gases carbon cycle IPCC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climate Change 2001: The Scientific Basis (IPCC Third Assessment Report), Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
  2. 2.
    Climate Change 2007: The Scientific Basis (IPCC Fourth Assessment Report), Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  3. 3.
    M. I. Budyko, The Earth’s Climate: Past and Future (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  4. 4.
    The Physical Basis of Climate and Climate Modelling (World Meteorological Organization, Geneva, 1975), GARP Publications Series, No. 16.Google Scholar
  5. 5.
    N. A. Dianskii, A. V. Glazunov, and V. P. Dymnikov, “Modeling the atmospheric circulation response to SST anomalies in the wintertime North Atlantic,” Izv., Atmos. Ocean. Phys. 35(1), 110–122 (1999).Google Scholar
  6. 6.
    A. V. Glazunov, N. A. Dianskii, and V. P. Dymnikov, “Localized and global responses of the atmospheric circulation to midlatitude sea surface temperature anomalies,” Izv., Atmos. Ocean. Phys. 37(5), 537–555 (2001).Google Scholar
  7. 7.
    E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46(4), 414–431 (2010).CrossRefGoogle Scholar
  8. 8.
    E. M. Volodin and N. A. Dianskii, “Simulation of climate changes in the 20th–22nd centuries with a coupled atmosphere-ocean general circulation model,” Izv., Atmos. Ocean. Phys. 42(3), 267–281 (2006).CrossRefGoogle Scholar
  9. 9.
    V. M. Kattsov and V. P. Meleshko, “Evaluation of atmosphere-ocean general circulation models used for projecting future climate change,” Izv., Atmos. Ocean. Phys. 40(6), 647–658 (2004).Google Scholar
  10. 10.
    P. V. Sporyshev and V. M. Kattsov, “Spatiotemporal features of global warming,” Dokl. Earth Sci. 410(7), 1160–1165 (2006).CrossRefGoogle Scholar
  11. 11.
    S. J. Lambert and J. C. Fyfe, “Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise,” Clim. Dyn. 26, 713–728 (2006).CrossRefGoogle Scholar
  12. 12.
    J.-L. Lin, G. N. Kiladis, B. E. Mapes, et al., “Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals,” J. Clim. 19, 2665–2690 (2006).CrossRefGoogle Scholar
  13. 13.
    R. L. Miller, G. A. Schmidt, and D. T. Shindell,, “Forced variations of annular modes in the 20th century IPCC AR4 simulations,” J. Geophys. Res. 111, 18101 (2006).CrossRefGoogle Scholar
  14. 14.
    J. L. Russell, R. J. Stouffer, and K. W. Dixon, “Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations,” J. Clim. 19, 4560–4575 (2006).CrossRefGoogle Scholar
  15. 15.
    X. Zhang and J. E. Walsh, “Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations,” J. Clim. 19, 1730–1747 (2006).CrossRefGoogle Scholar
  16. 16.
    V. P. Dymnikov, V. Ya. Galin, and V. L. Perov, “Analysis of climate sensitivity to CO2 doubling with zonal-mean model of atmospheric general circulation,” in Mathematical Models of Atmospheric Motions (Mathematical Modeling of Atmospheric and Oceanic Dynamics), Ed. by G. I. Marchuk (Computer Center of Siberian Branch of Academy of Sciences, Novosibirsk, 1980), Vol. 2 [in Russian].Google Scholar
  17. 17.
    I. I. Mokhov and A. V. Eliseev, “Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing,” Dokl. Earth Sci. 443(2), 532–536 (2012).CrossRefGoogle Scholar
  18. 18.
    A. V. Eliseev, “Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values,” Izv., Atmos. Ocean. Phys. 47(2), 131–153 (2011).CrossRefGoogle Scholar
  19. 19.
    I. I. Mokhov and A. V. Eliseev, “Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing,” Dokl. Earth Sci. 443(2), 532–536 (2012).CrossRefGoogle Scholar
  20. 20.
    A. V. Eliseev, “Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values,” Izv., Atmos. Ocean. Phys. 47(2), 131–153 (2011).CrossRefGoogle Scholar
  21. 21.
    A. V. Eliseev and I. I. Mokhov, “Uncertainty of climate response to natural and anthropogenic forcings due to different land-use scenarios,” Adv. Atmos. Sci. 28(5), 1215–1232 (2011).CrossRefGoogle Scholar
  22. 22.
    E. M. Volodin and N. A. Dianskii, “Response of a coupled atmosphere-ocean general circulation model to increased carbon dioxide,” Izv., Atmos. Ocean. Phys. 39(2), 170–186 (2003).Google Scholar
  23. 23.
    N. A. Dianskii and E. M. Volodin, “Simulation of present-day climate with a coupled atmosphere-ocean general circulation model,” Izv., Atmos. Ocean. Phys. 38(6), 732–747 (2002).Google Scholar
  24. 24.
    E. M. Volodin, “Atmosphere-ocean general circulation model with the carbon cycle,” Izv., Atmos. Ocean. Phys. 43(3), 266–280 (2007).CrossRefGoogle Scholar
  25. 25.
    J. Lean, J. Beer, and R. Bradley, “Reconstruction of solar irradiance since 1610: Implications for climate change,” Geophys. Res. Lett. 22, 3195–3198 (1995).CrossRefGoogle Scholar
  26. 26.
    N. L. Bindoff, J. Willebrand, V. Artale, et al., “Observations: Oceanic climate change and sea level,” in Climate Change 2007: The Scientific Basis, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge Univ. Press, Cambridge, 2007), pp. 385–432.Google Scholar
  27. 27.
    A. C. Naveira Garabato, L. Jullion, D. P. Stevens, K. J. Heywood, B. A. King, “Variability of subantarctic mode water and antarctic intermediate water in Drake Passage during the late 20th and early 21st centuries,” J. Clim. 22, 3661–3688 (2009).CrossRefGoogle Scholar
  28. 28.
    M. N. Koshlyakov, S. V. Gladyshev, R. Yu. Tarakanov, and D. A. Fedorov, “Currents in the western Drake Passage according to the observations in January of 2010,” Oceanology 51(2), 187–198 (2011).CrossRefGoogle Scholar
  29. 29.
    A. Hu, G. A. Meehl, and W. Han, “Role of the Bering Strait in the thermohaline circulation and abrupt climate change,” Geophys. Res. Lett. 34(5), 105704, (2007). doi 10.1029/2006GL028906CrossRefGoogle Scholar
  30. 30.
    M. O’Neil Beringer and J. C. Larsen, “Sixteen years of Florida Current transport at 27° N,” Geophys. Res. Lett. 28(16), 3179–3182 (2001).CrossRefGoogle Scholar
  31. 31.
    A. Biastoch, T. Treude, and L. H. Rüpke, et al., “Rising Arctic ocean temperatures cause gas hydrate destabilization and ocean acidification,” Geophys. Res. Lett. 38(8), L08602 (2011). doi 10.1029/2011GL047222CrossRefGoogle Scholar
  32. 32.
    E. M. Volodin and V. Ya. Galin, “Study of the first mode of low-frequency variability of atmospheric circulation in mid-latitudes of the Northern Hemisphere,” Meteorol. Gidrol., No. 8, 26–40 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations