Skip to main content
Log in

Effect of spatial inhomogeneity of the resistance coefficient on the dynamics of the M 2 tidal wave in the White Sea

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

To find variations in the dynamics of the surface M 2 tide in the White Sea induced by the spatially inhomogeneity of the resistance coefficient, we use a modified version of the QUODDY-4 three-dimensional finite-element hydrostatic model. This version differs from the original version in that it has a module introduced to calculate the resistance coefficient in the bottom boundary layer (BBL). The resistance coefficient is found from resistance laws for an oscillating rotating turbulent BBL over hydrodynamically rough and partially rough (smoothly rough) underlying surfaces describing the dependence of the resistance coefficient and other integral characteristics of resistance on dimensionless similarity parameters: the sea-bottom Rossby number Ro, the streaming Reynolds number Re, and the relative (normalized to tidal frequency) inertial frequency f/σ. The use of spatial inhomogeneity of the resistance coefficient was shown not to lead to considerable changes in tidal characteristics. The values of these characteristics are several times larger than the instrumental measurement errors for the level and velocity but less than the errors in their calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, “Tidal Friction in the Irish Sea,” Proc. R. Soc. London, Ser. A 96(678), 330 (1919).

    Article  Google Scholar 

  2. B. A. Kagan, “On the Resistance Law for a Tidal Flow,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8(3), 533–542 (1972).

    Google Scholar 

  3. R. W. Sternberg, “Friction Factors in Tidal Channels with Differing Bed Roughness,” Mar. Geol. 6(3), 243–260 (1968).

    Article  Google Scholar 

  4. J. R. L. Allen, “Large Transverse Bedforms and the Character of Boundary Layers in Shallow-Water Environments,” Sedimentology 27(3), 317–323 (1980).

    Article  Google Scholar 

  5. T. H. Bell, “Statistical Features of Sea-Floor Topography,” Deep-Sea Res. 22(12), 883–892 (1975).

    Google Scholar 

  6. R. W. Sternberg, “Predicting Initial Motion and Bedload Transport of Sediment Particles in the Shallow Marine Environment,” in Shelf Sediment Transport: Process and Pattern, Ed. by D. J. P. Swift, D. B. Duane, and O. H. Pilkey (Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA, 1972), pp. 61–82.

    Google Scholar 

  7. A. D. Heathershaw, “Measurements of Turbulence in the Irish Sea Benthic Boundary Layer,” in The Benthic Boundary Layer, Ed. by I. N. McCave (Plenum Press, New York and London, 1976), pp. 11–32.

    Chapter  Google Scholar 

  8. S. S. Zilitinkevich, Dynamics of Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  9. J. N. Aldridge and A. M. Davies, “A High-Resolution Three-Dimensional Hydrodynamic Tidal Model of the Eastern Irish Sea,” J. Phys. Oceanogr. 23(2), 207–224 (1993).

    Article  Google Scholar 

  10. A. M. Davies and J. Lawrence, “Modeling the Effect of Wave-Current Interaction on the Three-Dimensional Wind-Driven Circulation of the Eastern Irish Sea,” J. Phys. Oceanogr. 25(1), 29–45 (1995).

    Article  Google Scholar 

  11. B. A. Kagan, “On the Resistance Law for an Oscillatory, Rotating, Rough Turbulent Flow,” Izv., Atmos. Ocean. Phys. 39(6), 754–757 (2003).

    Google Scholar 

  12. B. A. Kagan, “On the Resistance Law for an Oscillatory Rotating Turbulent Bottom Boundary Layer over Incompletely Rough and Smooth Surfaces,” Izv., Atmos. Ocean. Phys. 41(6), 768–774 (2005).

    Google Scholar 

  13. B. A. Kagan and D. A. Romanenkov, “Effect of Hydrodynamic Properties of the Sea Bottom on the Tidal Dynamics in a Rectangular Basin,” Izv., Atmos. Ocean. Phys. 42(6), 777–784 (2006).

    Article  Google Scholar 

  14. J. T. C. Ip and D. R. Lynch, QUODDY3 User’s Manual: Comprehensive Coastal Circulation Simulation Model Using Finite Elements: Nonlinear Prognostic Time-Stepping Model (Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 1995), Report No. NML95-1.

    Google Scholar 

  15. B. A. Kagan and A. A. Timofeev, “Dynamics and Energetics of Surface and Internal Semidiurnal Tides in the White Sea,” Izv., Atmos. Ocean. Phys. 41(4), 498–512 (2005).

    Google Scholar 

  16. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York-Heidelberg-Berlin, 1979; Nauka, Moscow, 1984), Vol. 1.

    Book  Google Scholar 

  17. L. Padman and S. Erofeeva, “A Barotropic Inverse Tidal Model for the Arctic Ocean,” Geophys. Res. Lett. 31 (2004). doi: 10.1029/2003GL019003

  18. C. Chen, G. Gao, J. Qi, et al., “A New High-Resolution Unstructured-Grid Finite-Volume Arctic Ocean Model (AO-FVCOM): An Application for Tidal Studies,” J. Geophys. Res. 114(C8) CiteID C08017 (2009). doi: 10.1029/2008JC004941

  19. X. Lu and J. Zhang, “Numerical Study on Spatially Varying Bottom Friction Coefficient of a 2D Tidal Model with Adjoint Method,” Cont. Shelf Res. 26(16), 1905–1923 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kagan.

Additional information

Original Russian Text © B.A. Kagan, A.A. Timofeev, E.H.A. Rashidi, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 4, pp. 487–500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, B.A., Timofeev, A.A. & Rashidi, E.H.A. Effect of spatial inhomogeneity of the resistance coefficient on the dynamics of the M 2 tidal wave in the White Sea. Izv. Atmos. Ocean. Phys. 48, 432–443 (2012). https://doi.org/10.1134/S000143381204010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381204010X

Keywords

Navigation