Skip to main content
Log in

Certain results of numerical simulation of processes in the Arctic Ocean

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Variations in hydrophysical parameters in the Arctic Ocean and the North Atlantic are studied on the basis of numerical simulation with the use of an ocean circulation model (including ice formation and drift). The main circulation and ice-drift modes have been ascertained depending on atmospheric cycles. The possibilities of the parameterization of intermediate and deep water formation in numerical models of polar ocean dynamics are considered. The effect of the interannual variability of the discharge of Siberian rivers on the distribution and propagation of fresh water in this region are estimated from numerical experiments. The simulation results of the propagation of the dissolved methane from Siberian rivers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Kalinin and I. A. Shiklomanov, “The Use of Water Resources of the Earth,” in The World Water Balance and Water Resources of the Earth (Gidrometizdat, Leningrad, 1974), pp. 575–606 [in Russian].

    Google Scholar 

  2. B. J. Peterson, R. M. Holmes, J. W. McClelland, et al., “Increasing River Discharge to the Arctic Ocean,” Science 298(5601), 2171–2173 (2002).

    Article  Google Scholar 

  3. M. C. Serreze, A. P. Barrett, A. G. Slater, et al., “The Large-Scale Freshwater Cycle of the Arctic,” J. Geophys. Res. 111, 19 (2006). Doi: 10.1029/2005Jc003424

    Article  Google Scholar 

  4. K. A. Kvenvolden, “Methane Hydrates and Global Climate,” Global Biogeochem. Cycles 2(3), 221–229 (1988).

    Article  Google Scholar 

  5. IPCC. Third assessment report: climate change 2001 (Cambridge).

  6. N. E. Shakhova, V. I. Sergienko, and I. P. Semiletov, “Dissolved Methane in Shelf Waters of Arctic Seas,” Dokl. Akad. Nauk 402(4) (2005).

  7. N. E. Shakhova, I. P. Semiletov, and N. N. Bel’cheva, “The Great Siberian Rivers as Methane Sources on the Arctic Shelf,” Dokl. Akad. Nauk 414(5) (2007).

  8. A. D. McGuire, L. G. Anderson, T. R. Christensen, et al., “Sensitivity of the Carbon Cycle in the Arctic To Climate Change,” Ecolog. Monogr 79(4), 523–555 (2009).

    Article  Google Scholar 

  9. E. Damm, A. Mackensen, G. Budeus, et al., “Pathways of Methane in Seawater: Plume Spreading in An Arctic Shelf Environment (SW-Spitsbergen),” Continental Shelf Res 25 (2005). Doi: 10.1016/J.Csr.2005.03.003

  10. A. S. Sarkisyan, Fundamentals of the Theory and Calculation of Ocean Currents(Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  11. A. S. Sarkisyan and J. Sundermann, Modelling Ocean Climate Variability (Springer, New York, 2009).

    Book  Google Scholar 

  12. V. I. Kuzin, The Finite Element Method in Modeling of Oceanic Processes (VTs SO RAN, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  13. V. I. Kuzin, E. N. Golubeva, and G. A. Platov, “Modeling of Hydrophysical Characteristics of the Arctic Ocean-North Atlantic System,” in Fundamental Studies of Oceans and Seas, Ed. by N. P. Laverov (Nauka, Moscow, 2006), vol. 1, pp. 166–190. [in Russian].

    Google Scholar 

  14. E. N. Golubeva and G. A. Platov, “On Improving the Simulation of Atlantic Water Circulation in the Arctic Ocean,” J. Geophys. Res. 112, 05 (2007). Doi: 10.1029/2006Jc003734

    Article  Google Scholar 

  15. E. N. Golubeva, “Numerical Modeling of the Atlantic Water Dynamics in the Arctic Basin Using the QUICKEST Scheme,” Vych. Tekhnol. 13(5), 11–24 (2008).

    Google Scholar 

  16. W. D. Hibler, “A Dynamic Thermodynamic Sea Ice Model,” J. Phys. Oceanography 9(4), 815–846 (1979).

    Article  Google Scholar 

  17. E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Ice Dynamics,” J. Phys. Oceanography 27(9), 1849–1867 (1997).

    Article  Google Scholar 

  18. C. M. Bitz and W. H. Lipscomb, “An Energy-Conserving Thermodynamic Model of Sea Ice,” J. Geophys. Res. 104 (1999). Doi: 10.1029/1999Jc900100

  19. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, et al., “Numerical Simulation of Large-Scale Ocean Circulation Based on the Multicomponent Splitting Method,” Russ. J. Numer. Anal. Math. Modelling 25(6), 581–609 (2010).

    Article  Google Scholar 

  20. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988).

    Google Scholar 

  21. A. Proshutinsky, R. Gerdes, D. Holland, et al., “AOMIP: Coordinated Activities to Improve Models and Model Predictions,” Clivar Newsletter “Exchanges” 44 13(1), 17–18, 23–27 (2008). http://www.clivar.org/publications/exchanges/exchanges.php

    Google Scholar 

  22. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77 (1996).

  23. W. G. Large and S. G. Yeager, “Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies,” Technical Report TN-460+STR NCAR (2004).

  24. R. Kwok and D. A. Rothrock, “Decline in Arctic Sea Ice Thickness from Submarine and ICES at Records: 1958–2008,” Geophys. Rev. Lett. 36, L15501 (2009). Doi: 10.1029/2009Gl039035.

    Article  Google Scholar 

  25. J. Stroeve, M. M. Holland, W. Meier, et al., “Arctic Sea Ice Decline: Faster Than Forecast,” Geophys. Rev. Lett. 34, L09501 (2007). Doi: 10.1029/2007Gl029703.

    Article  Google Scholar 

  26. C. L. Parkinson and D. J. Cavalieri, “A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal and Monthly Variability and Trends,” Ann. Claciol. 34, 441–446 (2002). Doi: 10.3189/172756402781817725.

    Article  Google Scholar 

  27. J. Zhang and M. Steele, “The Effect of Vertical Mixing on the Atlantic Layer Circulation in the Arctic Ocean,” J. Geophys. Res. 112, 04 (2007). Doi: 10.1029/2006Jc003732.

    Google Scholar 

  28. T. Martin and R. Gerdes, “Sea Ice Drift Variability in Arctic Ocean Model Intercomparison Project Models and Observations,” J. Geophys. Res. 112, 10 (2007). Doi: 10.1029/2006Jc003617.

    Google Scholar 

  29. M. Johnson, S. Gaffigan, E. Hunke, et al., “A Comparison of Arctic Ocean Sea Ice Concentration among the Coordinated AOMIP Model Experiments,” J. Geophys. Res. 112, 11 (2007). Doi: 10.1029/2006Jc003690.

    Google Scholar 

  30. Z. M. Gudkovich, “The Basic Patterns of Ice Drift in the Central Arctic Basin,” in Proc. Conf. “Interaction of Atmosphere and Hydrosphere in the North Atlantic Ocean” (Gidrometeoizdat, Leningrad, 1961), Parts 3–4, pp. 75–78.

    Google Scholar 

  31. D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Rev. Lett. 25(9), 1297–1300 (1998). Doi: 10.1029/98Gl00950.

    Article  Google Scholar 

  32. C. Fowler, Polar Pathfinder Daily 25 Km Ease-Grid Sea Ice Motion Vectors (National Snow and Ice Data Center, Boulder, 2008).

    Google Scholar 

  33. S. Laxon, N. Peacock, and D. Smith, “High Interannual Variability of Sea Ice Thickness in the Arctic Region,” Nature 425 (2003). www.nature.com/nature.

  34. K. Aagaard and E. C. Carmack, “The Role of Sea Ice and Other Fresh Water in the Arctic Circulation,” J. Geophys. Res. 94(1), 14485–14498 (1989).

    Article  Google Scholar 

  35. S. E. Wijffels, R. W. Schmitt, H. L. Bryden, et al., “Transport of Freshwater by the Oceans,” J. Phys. Oceanogr. 22(2), 155–162 (1992).

    Article  Google Scholar 

  36. H. Goosse, J.-M. Campin, T. Fichefet, et al., “Sensitivity of a Global Ice-Ocean Model to the Bering Strait Through Flow,” Clim. Dynam. 13 (1997).

  37. K. Shimada, F. McLaughlin, E. Carmack, et al., “Penetration of the 1990s Warm Temperature Anomaly of Atlantic Water in the Canada Basin,” Geophys. Rev. Lett. 31, L20301 (2004). Doi: 10.1029/2004Gl020860.

    Article  Google Scholar 

  38. M. Steele, J. Morison, W. Ermold, et al., “Circulation of Summer Pacific Halocline Water in the Arctic Ocean,” J. Geophys. Res. 109, C02027 (2004). Doi: 02010.01029/02003Jc002009.

    Article  Google Scholar 

  39. F. A. McLaughlin, E. C. Carmack, R. W. Macdonald, et al., “Physical and Geochemical Properties across the Atlantic/Pacific Water Mass Front in the Southern Canadian Basin,” J. Geophys. Res. 101(C1), 1183–1197 (1996).

    Article  Google Scholar 

  40. Y. Aksenov, B. de Cuevad, R. Gerbes, et al., “Arctic Pathways of the Pacific Water: the Arctic Ocean Model Intercomparison Experiments,” Geophys. Res. Abstracts 13, EGU2011–10598 (2011).

    Google Scholar 

  41. V. T. Timofeev, Water Masses of the Arctic Basin (Gidrometeoizdat, Leningrad, 1960) [in Russian].

    Google Scholar 

  42. A. F. Treshnikov and G. I. Baranov, Circulation of the Arctic Basin (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  43. E. G. Nikifirov and A. O. Shpaikher, Patterns of Formation of Large-Scale Fluctuations of the Hydrological Regime in the Arctic Ocean (Gidrometeoizdat, Leningrad, 1980) [In Russian].

    Google Scholar 

  44. L. K. Coachman, “Physical Oceanography in the Arctic Ocean,” Arctic 15(3), 214–224 (1969).

    Google Scholar 

  45. K. Aagaard, “Inflow from the Atlantic Ocean in the Polar Basin,” in The Arctic Ocean. The Hydrographic Environment and Fate of Pollutant, Ed. by L. Rey (Unwin Brothers Ltd., London, 1982), pp. 69–81.

    Google Scholar 

  46. B. Rudels, E. P. Jones, L. G. Anderson, et al., “On the Intermediate Depth Water of the Arctic Ocean,” in The Polar Oceans and Their Role in the Shaping the Global Environment: The Nansen Centennial Volume, Ed. by O. M. Johannessen, R. D. Muench, and J. E. Overland, Geophysical Monograph 85 (American Geophysical Union, Washington, DC, 1994), pp. 33–46.

    Google Scholar 

  47. M. Karcher, R. Gerdes, F. Kauker, et al., “Arctic Warming-Evolution and Spreading of the 1990s Warm Event in the Nordic Seas and in the Arctic Ocean,” J. Geophys. Res. 108(C2) (2003). Doi: 10.1029/2001Jc002624.

  48. N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Atmos. Ocean. Phys. 39(3), 355–368 (2003).

    Google Scholar 

  49. L. Nazarenko, G. Holloway, and N. Tausnev, “Dynamics of Transport of “Atlantic Signature” in the Arctic Ocean,” J. Geophys. Res. 103 (1998).

  50. G. V. Alekseev, L. V. Bulatov, V. F. Zakharov, et al., “Thermal Expansion of Atlantic Waters in the Arctic Basin,” Meteorol. Gidrol., no. 7, 69–78 (1998).

    Google Scholar 

  51. I. V. Polyakov, A. Beszczynska, E. C. Carmack, et al., “One More Step Toward a Warmer Arctic,” Geophys. Rev. Lett. 32, L17605 (2005). Doi: 10.1029/2005Gl023740.

    Article  Google Scholar 

  52. E. N. Golubeva and G. A. Platov, “Numerical Modeling of the Arctic Ocean Ice System Response to Variations in the Atmospheric Circulation from 1948 to 2007,” Izv. Atmos. Ocean. Phys. 45(1), 137–152 (2009).

    Article  Google Scholar 

  53. N. G. Yakovlev, “Modeling of Climate of the Ocean and Sea Ice of the Arctic Ocean using the FEMAO Finite Element Model: On the Problem of Understanding the Role of Various Physical Processes in the Formation of the Observed States and Their Reproduction in the Global Climate Models,” Probl. Arkt. Antarkt. 1(78), 17–26 (2008).

    Google Scholar 

  54. G. Holloway and A. Proshutinsky, “Role of Tides in Arctic Ocean/Ice Climate,” J. Geophys. Res. 112, 06 (2007). Doi: 10.1029/2006Jc003643.

    Google Scholar 

  55. A. Y. Proshutinsky and M. Johnson, “Two Circulation Regimes of the Wind-Driven Arctic Ocean,” J. Geophys. Res. 102(C6), 12493–12504 (1997).

    Article  Google Scholar 

  56. W. S. Broecker, “The Great Ocean Conveyor,” Oceanography 4(2), 79–89 (1991).

    Google Scholar 

  57. K. Aagaard, L. K. Coachman, and E. Carmack, “On the Halocline of Arctic Ocean,” Deep-Sea Res. 28A(6), 529–545 (1981).

    Article  Google Scholar 

  58. G. Björk, “A One-Dimensional Time-Dependant Model for the Vertical Stratification of the Upper Arctic Ocean,” J. Phys. Oceanogr. 19(1), 52–67 (1989).

    Article  Google Scholar 

  59. G. Björk, “The Vertical Distribution of Nutrients and Oxygen 18 in the Upper Arctic Ocean,” J. Geophys. Res. 95(C9), 16025–16036 (1990).

    Article  Google Scholar 

  60. M. Steele, J. M. Morison, and T. B. Curtin, “Halocline Water Formation in the Barents Sea,” J. Geophys. Res. 100(C1), 881–894 (1995).

    Article  Google Scholar 

  61. E. P. Jones, B. Rudels, and L. G. Anderson, “Deep Water of the Arctic Ocean: Origin and Circulation,” Deep-Sea Res. 42(5), 737–760 (1995).

    Article  Google Scholar 

  62. D. J. Cavalieri and S. Martin, “The Contribution of Alaskan, Siberian and Canadian Coastal Polynyas to the Cold Halocline Layer of the Arctic Ocean,” J. Geophys. Res. 99(C9), 18343–18362 (1994).

    Article  Google Scholar 

  63. B. Rudels, L. G. Anderson, and E. P. Jones, “Formation and Evolution of the Surface Mixed Layer and Halocline of the Arctic Ocean,” J. Geophys. Res. 101(C4), 8807–8821 (1996).

    Article  Google Scholar 

  64. C. H. Pease and S. A. Salo, “Sea Ice Drift Near Bering Strait during 1982,” J. Geophys. Res. 92(C7), 6006–6018 (1987).

    Google Scholar 

  65. W. Schneider and G. Budeus, “On the Generation of the Northeast Water Polynya,” J. Geophys. Res. 100(C3), 6006–6018 (1995).

    Article  Google Scholar 

  66. L. Midttun, “Formation of Dense Bottom Water in the Barents Sea,” Deep-Sea Res. 32A(10), 1233–1241 (1985).

    Article  Google Scholar 

  67. J. Blindheim, “Cascading of Barents Sea Bottom Water into the Norwegian Sea, Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer. 188, 49–58 (1989).

    Google Scholar 

  68. M. Winton, R. W. Hallberg, and A. Gnanadesikan, “Simulation of Density Driven Frictional Down Slope Flow in Z-Coordinate Ocean Models,” J. Phys. Oceanogr. 28(11), 2163–2174 (1998).

    Article  Google Scholar 

  69. A. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982).

    Google Scholar 

  70. A. Beckmann and R. Doscher, “A Method for Improved Representation of Dense Water Spreading Over Topography in Geopotential-Coordinate Models,” J. Phys. Oceanogr. 27(4), 581–591 (1997).

    Article  Google Scholar 

  71. J.-M. Campin and H. Goosse, “Parameterization of Density-Driven Downsloping Flow for a Coarse-Resolution Ocean Model in Z-Coordinate,” Tellus 51A(3), 412–430 (1999).

    Google Scholar 

  72. D.-P. Wang, “Mutual Intrusion of a Gravity Current and Density Front Formation,” J. Phys. Oceanogr. 14(7), 1191–1199 (1984).

    Article  Google Scholar 

  73. P. D. Killworth and N. Edwards, “A Turbulent Bottom Boundary Layer Code for Use in Numerical Ocean Models,” J. Phys. Oceanogr. 29, 1221–1238 (1999).

    Article  Google Scholar 

  74. V. V. Ivanov, “Water Balance and Water Resources in the Arctic Region,” Trudy AANII 323, 4–24 (1976).

    Google Scholar 

  75. I. A. Shiklomanov, A. I. Shiklomanov, R. B. Lamers, et al., “The Dynamics of River Water Inflow to the Arctic Ocean,” in Proc. NATO Advanced Research Workshop on the Freshwater Budget of the Arctic Ocean (NATO, Tallin, Estonia, 2000), pp. 281–296.

    Google Scholar 

  76. Atlas of the World Ocean, Ed. by S. G.. Gorshkov (Pergamon, New York, 1983).

    Google Scholar 

  77. Atlas of the Arctic, Ed. by A. F.. Treshnikov (AANII, Moscow, 1985) [in Russian].

    Google Scholar 

  78. D. J. Hanzlik and K. Agaard, “Fresh and Atlantic Water in the Kara Sea,” J. Geophys. Res. 85(C9), 4937–4942 (1980).

    Article  Google Scholar 

  79. R. W. McDonald, C. S. Wong, and P. E. Erickson, “The Distribution of Nutrience in the Southeastern Beaufort Sea: Implications for Water Circulation and Primary Production,” J. Geophys. Res. 92(C3), 2939–2952 (1987).

    Article  Google Scholar 

  80. S. S. Lappo, “On the Problem of Heat Advection to the North Across the Equator in the Atlantic Ocean,” in The Study of Interaction of the Ocean and the Atmosphere (Gidrometeoizdat, Moscow, 1984), pp. 125–129 [in Russian].

    Google Scholar 

  81. W. S. Broecker, “Thermohaline Circulation, the Achilles Heel of Our Climate System: Will Man-Made CO2 Upset the Current Balance?,” Science 278(5343), 1582–1588 (1997).

    Article  Google Scholar 

  82. R. R. Dickson, J. Meincke, S. -A. Malmberg, et al., “The ‘Great Salinity Anomaly’ in the Northern North Atlantic 1968–1982,” Progr. Oceanogr. 20, 103–151 (1988).

    Article  Google Scholar 

  83. R. A. Woodgate, K. Agaard, R. D. Muench, et al., “The Arctic Ocean Boundary Current along the Eurasian Slope and the Adjacent Lomonosov Ridge: Water Mass Properties, Transports and Transformations from Moored Instruments,” Deep Sea Res. I 48, 1757–1792 (2001).

    Article  Google Scholar 

  84. R. A. Woodgate, K. Aagaard, and T. Weingartner, “Intrannual Changes in the Bering Strait Fluxes of Volume, Heat, and Freshwater between 1991 and 2004,” Geophys. Rev. Lett. 33, L15609 (2006). Doi: 1029/2006Gl026931

    Article  Google Scholar 

  85. E. Linacre and B. Geerts, The Arctic: the Ocean, Sea Ice, Icebergs, and Climate (1998). http://www-das.uwyo.edu/~geerts/cwx/notes/chap17/arctic.html.

  86. J. D. Milliman and R. H. Meade, “World Wide of River Delivery Sediment to the Oceans,” J. Geol. 91(1), 1–21 (1983).

    Article  Google Scholar 

  87. C. L. Parkinson, J. C. Comiso, H. J. Zwally, et al., Arctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations (NASA, D. C, Washington, DC, 1987).

    Google Scholar 

  88. A. Dai and K. Trenberth, “Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations,” J. Hydrometeor, no. 3, 660–687 (2002).

  89. The State Water Cadastre. Long-Term Data on the Status and Resources of Surface Waters, (Gidrometeoizdat, Leningrad, 1984), vol. 1, nos. 10, 12, 16 [in Russian].

  90. The State Water Cadastre, Ver. 1: Surface Water, Ser. 2: Annual Data on the Regimen and Resources of Surface Waters in 1981–1990 Parts 1, 2, vol. 1 (Novosibirsk. TsGMS-RSMTs, Novosibirsk), no. 12; (Krasnoyarsk. TsGMS-R, Krasnoyarsk), no. 16 (1981–1990) [in Russian].

  91. J. E. Walsh, “Global Atmospheric Circulation Patterns and Relationships to Arctic Freshwater Fluxes,” in The Freshwater Budget of the Arctic Ocean, Ed. by E. L. Lewis et al., (Kluwer, Norwell, MA, 2000), pp. 21–41.

    Google Scholar 

  92. D. W. J. Thompson and J. M. Wallace, “Annular Modes in Extratropical Circulation. Pt I: Month-to-Month Variability,” J. Clim. 13(5), 1000–1016 (2000).

    Article  Google Scholar 

  93. D. W. J. Thompson, J. M. Wallace, and G. C. Hegerl, “Annular Modes in Extratropical Circulation. Pt II: Trends,” J. Clim. 13(5), 1018–1036 (2000).

    Article  Google Scholar 

  94. D. Yang, D. L. Kane, L. D. Hinzman, et al., “Siberian Lena River Hydrologic Regime and Recent Change,” J. Geophys. Res. 107 D234694 (2002). Doi: 10.1029/202Jd002542.

  95. J. W. McClelland, R. M. Holmes, B. J. Peterson, et al., “Increasing River Discharge in the Eurasian Arctic: Consideration of Dams, Permafrost Thaw, and Fires As Potential Agents of Change,” J. Geophys. Res. 109, D18102 (2004). Doi: 10.1029/2004Jd004583.

    Article  Google Scholar 

  96. S. Berezovskaya, D. Yang, and D. Kane, “Compatibility Analysis of Presipitationand Runoff Trends Over the Large Siberian Watersheds,” Geoph. Res Lett 31 (2004). Doi:10.1029/2004Gl121277.

  97. A. I. Shiklomanov and R. B. Lamers, “Record Russian River Discharge in 2007 and the Limits of Analysis,” Environ. Res. Lett. 4 (2009). Doi: 10.1088/1748-9326/4/4/045015.

  98. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis; Contribution of Working Group I to the Third Assessment Report of the IPCC, Ed. by J.C. Houghton et al. (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  99. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988).

    Google Scholar 

  100. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of Modeling Climate and Climate Changes,” Izv. Atmos. Ocean. Phys. 42(5), 568–586 (2006).

    Article  Google Scholar 

  101. B. I. Kuzin, G. A. Platov, and E. N. Golubeva, “Influence that Interannual Variations in Siberian River Discharge Have on Redistribution of Freshwater Fluxes in Arctic Ocean and North Atlantic,” Izv. Atmos. Ocean. Phys. 46(6), 770–784 (2010).

    Article  Google Scholar 

  102. V. V. Adushkin, S. P. Solov’ev, and S. B. Turuntaev, “Ratio of Anthropogenic and Natural Component in the Flow of Gases to the Atmosphere,” in Global Environmental Change-2001 (Izd. SO RAN, Novosibirsk, 2001), pp. 249–265 [in Russian].

    Google Scholar 

  103. D. J. Wuebbles and K. Hayhoe, “Atmospheric Methane and Global Change,” Earth-Science Reviews 57, 177–210 (2002).

    Article  Google Scholar 

  104. N. Shakhova and I. Semiletov, “Methane Release and Coastal Environment in the East Siberian Arctic Shelf,” J. Marine Systems 66(1), 227–243 (2007).

    Article  Google Scholar 

  105. D. L. Valentine, D. Blanton, W. S. Reeburgh, et al., “Water Column Methane Oxidation Adjacent to an Area of Active Hydrate Dissociation,” Eel River Basin, Geochim. Cosmochim. Acta 65(16), 2633–2640 (2001).

    Article  Google Scholar 

  106. R. P. Griffiths, B. A. Caldwell, J. D. Cline, et al., “Field Observations of Methane Concentrations and Oxidation Rates in the Southeastern Bering Sea,” Appl. Environ. Microbiol. 44(2), 435–446 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kuzin.

Additional information

Original Russian Text © V.I. Kuzin, G.A. Platov, E.N. Golubeva, V.V. Malakhova, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 1, pp. 117–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzin, V.I., Platov, G.A., Golubeva, E.N. et al. Certain results of numerical simulation of processes in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 48, 102–119 (2012). https://doi.org/10.1134/S0001433812010069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812010069

Keywords

Navigation