Skip to main content
Log in

A numerical model of online forecasting Black Sea currents

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A numerical three-dimensional nonlinear model of the hydrophysical fields of the Black Sea is presented. The properties of model discrete equations are described. The results of test experiments on the choice of model finite-difference approximations and parameters (as applied to the online forecasting of currents) are given. The results of prognostic calculations of the hydrophysical fields of the Black Sea are given for the period of March 31, 2005, to September 26, 2006. These results show that this numerical model with consideration for real atmospheric forcing can yield a satisfactory forecast of the parameters of the upper layers of the sea for 18 months of model time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Marchuk and A. S. Sarkisyan, The Razrezy Program and Modeling of Water Circulation in the World Ocean, in Numerical Simulation of the Climate of the World Ocean (VINITI, Moscow, 1986), pp. 5–18 [in Russian].

    Google Scholar 

  2. G. I. Marchuk, “Simulation of Climate Change and the Problem of Long-Term Weather Forecasting,” Meteorol. Gidrol., no. 7, 25–36 (1979).

  3. S. G. Demyshev and G. K. Korotaev, “Numerical Energy-Balanced Model of Baroclinic Currents of the Ocean on the Grid,” in Numerical Models and Results of Calibration Calculations of Currents in the Atlantic Ocean (IVM RAN, Moscow, 1992), pp. 163–231 [in Russian].

    Google Scholar 

  4. A. V. Alekseev, E. M. Al’tman, V. I. Batov, et al., The Study and Modeling of Hydrodynamic Processes in the Black Sea, Ed. by Levikov S.P., Moscow: Gidrometeoizdat, 1989 [in Russian].

    Google Scholar 

  5. S. G. Demyshev and G. K. Korotaev, “Numerical Experiments on the Four-Dimensional Assimilation of Observational Data in the Black Sea in June 1984 on the Basis of the Numerical Energy-Balanced Model,” Morsk. Gidrofiz. Zh., no. 3, 21–33 (1992).

  6. G. K. Korotaev and V. N. Eremeev, Introduction to Operational Oceanography (NPTs, Sevastopol) [in Russian].

  7. S. V. Motyzhev, “The Development of the Drift Block within the Framework of the Strategy of Building Surveillance Systems for Ocean and Climate Variability,” in Proc. VI Int. Sci.-Techn. Conf. “Modern Methods and Tools for Oceanographic Research,” Plenary Report (Shirshov Institute of Oceanology, Russ. Acad. Sci., Moscow, 2000), pp. 105–114 [in Russian].

    Google Scholar 

  8. A. P. Tolstosheev, G. K. Korotaev, and E. G. Lunev, “Thermoprofiling Drifting Buoy. Ecological Safety of Coastal and Shelf Areas and Complex Use of Shelf Resources,” in Collected Papers of National Academy of Sciences of Ukraine, // Sbornik nauchnykh trudov. Vyp. 11. NAN Ukrainy (MGI, IGN, OF InByum, Sevastopol, 2005), vol. 11, pp. 143–154 [in Russian].

    Google Scholar 

  9. A. Arakawa, “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow,” J. Comput. Phys., no. 1, 119–143 (1966).

  10. S. G. Demyshev and G. K. Korotaev, “Numerical Conservative Model of Baroclinic Currents in the Ocean,” in Numerical Simulation of Climate of the World Ocean (VINITI, Moscow, 1986), pp. 60–79 [in Russian].

    Google Scholar 

  11. S. G. Demyshev, “Approximation of the Hydrostatic Equation in the Numerical Conservative Models Using Nonlinear Equation of State,” Morsk. Gidrofiz. Zh., no. 2, 59–62 (1991).

    Google Scholar 

  12. S. G. Demyshev, “Buoyant-Force Approximation in a Numerical Model of Baroclinic Ocean Currents,” Izv. Atmos. Ocean. Phys. 34(3), 362–369 (1998).

    Google Scholar 

  13. A. Arakawa and V. R. Lamb, “A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equation,” Mon. Wea. Rev. 109(1), 18–36 (1981).

    Article  Google Scholar 

  14. S. G. Demyshev, “Numerical Experiments on the Comparison of Two Finite Difference Schemes for Movement Equations in a Discrete Model of the Black Sea Hydrodynamics,” Morsk. Gidrofiz. Zh., no. 5, 47–59 (2005).

  15. N. G. Iakovlev, “A Numerical Model and Preliminary Results of Calculations to Reproduce the Summer Circulation in the Kara Sea,” Izv. Atmos. Ocean. Phys. 32(5), 660–668 (1996).

    Google Scholar 

  16. S. G. Demyshev, “On Increasing the Accuracy of the Calculation of Currents in the Black Sea using a Reduced Sea Level in a Numerical Model,” Meteorol. Gidrol., no. 9, 75–83 (1996).

    Google Scholar 

  17. G. L. Mellor and T. Yamada, Users Guide for Three-Dimensional Primitive Equation Numerical Ocean Model. Available on the Princeton Ocean Model Web Site, http://www.ocean-modeling.org.

  18. A. I. Perederei and A. S. Sarkisyan, “Exact Solutions of Some Transformed Equations for the Dynamics of Sea Currents,” Izv. AN SSSR. Fiz. Atmos. Okeana 8(10), 1073–1079 (1972).

    Google Scholar 

  19. S. G. Demyshev, “Modeling the Seasonal Variability of the Black Sea Hydrophysical Fields with Harmonic and Biharmonic Parametrizations of the Horizontal Friction Force,” Izv. Atmos. Ocean. Phys. 39(2), 248–258 (2003).

    Google Scholar 

  20. S. G. Demyshev, “A Numerical Experiment on the Calculation of Density Fields and Current Velocity in the Black Sea in Summer,” Morsk. Gidrofiz. Zh., no. 4, 59–62 (1991).

  21. S. G. Demyshev, “Four-Dimensional Assimilation of Temperature and Salinity Data from the Black Sea,” Izv. Atmos. Ocean. Phys. 32(2), 258–267 (1996).

    Google Scholar 

  22. S. G. Demyshev and G. K. Korotaev, “Numerical Modeling of the Seasonal Trend of Synoptic Variability of the Black Sea,” Izv. Atmos. Ocean. Phys. 32(1), 99–106 (1996).

    Google Scholar 

  23. S. G. Demyshev, G. K. Korotaev, and V. V. Knysh, “Modeling the Seasonal Variability of the Temperature Regime of the Black Sea Active Layer,” Izv. Atmos. Ocean. Phys. 40(2), 227–237 (2004).

    Google Scholar 

  24. A. M. Obukhov, “Turbulence in Thermally Inhomogeneous Atmosphere,” Trudy Inst. Teor. Geofiz. AN SSSR 24(151), 3–42 (1946).

    Google Scholar 

  25. R. C. Pacanowski and S. G. H. Philander, “Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans,” J. Phys. Oceanogr. 11(11), 1443–1451 (1981).

    Article  Google Scholar 

  26. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49(3), 357–393 (1983).

    Article  Google Scholar 

  27. V. V. Fomin, “Numerical Model of Water Circulation in the Sea of Azov,” Nauch. Trudy UkrNIGMI, no. 249, 246–255 (2002).

    Google Scholar 

  28. Yu. B. Ratner, M. V. Martynov, T. M. Bayankina, et al., “Information Flows in the Real-Time System of Rapid Monitoring of Hydrophysical Fields of the Black Sea and Automation of Their Processing,” in Environment Control Systems-2005 (EKOSI-Gidrofizik, Sevastopol, 2005), pp. 140–149 [in Russian].

    Google Scholar 

  29. Yu. B. Ratner, M. V. Ivanchik, T. M. Bayankina, et al., “The System Structure and Management of the Computing Process of Modeling the Dynamics of the Black Sea,” in Environment Control Systems. Tools and Information Technologies-2006 (EKOSI-Gidrofizika, Sevastopol, 2006), pp. 150–158 [in Russian].

    Google Scholar 

  30. V. L. Dorofeev, G. K. Korotaev, and Yu. B. Ratner, “The Monitoring System of the Hydrophysical Fields in the Black Sea in a Quasi-Operative Mode,” in Environment Control Systems. Tools and Information Technologies-2006 (EKOSI-Gidrofizika, Sevastopol, 2006), pp. 150–158 [in Russian].

    Google Scholar 

  31. Hydrometeorology and Hydrochemistry of the Seas of the USSR, vol. IV: The Black Sea, no. 1: Hydrometeorological Conditions (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].

  32. Marine Portal NSAU. http://dvs.net.ua

  33. G. L. Mellor and T. A. Yamada, “Development of a Turbulence Closure Model for Geophysical Fluid Problems,” Rev. Geophys. 20(4), 851–875 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Demyshev.

Additional information

Original Russian Text © S.G. Demyshev, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 1, pp. 137–149.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demyshev, S.G. A numerical model of online forecasting Black Sea currents. Izv. Atmos. Ocean. Phys. 48, 120–132 (2012). https://doi.org/10.1134/S0001433812010021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812010021

Keywords

Navigation