Skip to main content
Log in

Meridional energy flux in the Arctic from data of the radiosonde archive IGRA

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The meridional energy transport into high latitudes of the Northern Hemisphere is an important climate-forming factor in the Arctic. This work presents the results of calculating the meridional energy flux across 70° N based on the Integrated Global Radiosonde Archive (IGRA) data from the radio sounding of the atmosphere. The long-term mean energy flux over the period 1992–2007 in the layer from the Earth’s surface to 30 hPa is 70.6 W m−2. The fraction of the sensible heat flux is 23.2 W m−2, i.e., 33% of the total energy flux; the fraction of the latent heat flux is 28.0 W m−2 (40% of the total energy flux); the fraction of the potential energy is 20.0 W m−2 (27%); and the fraction of the kinetic energy is 0.53 W m−2, i.e., less than 1% of the total energy flux. The vertical structure of the flux shows that the main energy transport into the Arctic takes place in the middle troposphere-lower stratosphere layer, whereas the energy is transported mainly out of the Arctic in the lower troposphere, which agrees well with the schematic notion about the polar circulation cell. The spatial structure of the flux shows that the key regions with a positive (directed into the Arctic) energy flux are located in the vicinity of 160° E (the northwestern part of Eurasia, Pacific sector) and 50° W (Greenland sector). The regions with a negative (directed out of the Arctic) energy flux are located near 120° W (Canadian Arctic Archipelago) and from 20° E to 90° E (Atlantic sector). In the period from 1992 to 2007, the meridional energy transport into the Arctic weakened by −0.26 W m−2 yr−1. The changes were mutually correlated; namely, positive and negative energy fluxes weakened in amplitude, almost without changing their locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nakamura and A. H. Oort, “Atmospheric Heat Budgets of the Polar Regions,” J. Geophys. Res. 93(D8), 9510–9524 (1988).

    Article  Google Scholar 

  2. J. E. Overland and P. Turet, “Variability of the Atmospheric Energy Flux across 70° N Computed from the GFDL Data Set,” Nansen Centennial Volume. Geophys. Monogr. American Geophys. Union, No. 84, 313–325 (1994).

  3. J. E. Overland, P. Turet, and A. H. Oort, “Regional Variations of Moist Static Energy Flux into the Arctic,” J. Clim. 9(1), 54–65 (1996).

    Article  Google Scholar 

  4. K. E. Trenberth and D. P. Stepaniak, “Co-Variability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales,” J. Clim. 16, 3691–3705 (2003).

    Article  Google Scholar 

  5. T. Semmler, D. Jacob, K. H. Schlunzen, et al., “The Water and Energy Budget of the Arctic Atmosphere,” J. Clim. 18(13), 2515–2530 (2005).

    Article  Google Scholar 

  6. M. C. Serreze, A. P. Barrett, A. G. Slater, et al., “The Large-Scale Energy Budget of the Arctic,” J. Geophys. Res. 112(D11122) (2007). doi: 10.1029/2006Jd008230.

  7. A. A. Vinogradova, “Meridional Mass and Energy Fluxes in the Vicinity of the Arctic Border,” Izv. Atmos. Ocean. Phys. 43(3), 281–293 (2007).

    Article  Google Scholar 

  8. L. H. Smedsrud, A. Sorteberg, and K. Kloster, “Recent and Future Changes of the Arctic Sea Ice Cover,” Geophys. Rev. Lett. 35 (2008). doi: 10.1029/2008GL034813.

  9. M. C. Serreze and R. G. Barry, The Arctic Climate System (UK, Cambridge University Press, Cambridge, 2005).

    Book  Google Scholar 

  10. E. Van der Swaluw, S. Drijfhout, and W. Hazeleger, “Bjerknes Compensation at High Northern Latitudes: The Ocean Forcing the Atmosphere,” J. Clim. 20, 6023–6032 (2007).

    Article  Google Scholar 

  11. D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Rev. Lett. 25, 1297–1300 (1998).

    Article  Google Scholar 

  12. R. Quadrelli and J. M. Wallace, “A Simplified Linear Framework for Interpreting Patterns of Northern Hemisphere Wintertime Climate Variability,” J. Clim. 17, 3728–3744 (2004).

    Article  Google Scholar 

  13. M. Tsukernik, T. N. Chase, M. C. Serreze, et al., “On the Regulation of Minimum Mid-Tropospheric Temperatures in the Arctic,” Geophys. Rev. Lett. 31, L06112 (2004). doi: 10.1029/2003GL018831.

    Article  Google Scholar 

  14. R. G. Graversen, T. Mauritsen, M. Tjernstrom, et al., “Vertical Structure of Recent Arctic Warming,” Nature 541, 53–57 (2008).

    Article  Google Scholar 

  15. V. A. Alexeev, I. Esau, I. V. Polyakov, et al., “Vertical Structure of Recent Arctic Warming from Observed Data and Reanalysis Products,” Geophys. Res. Abstr. 11, EGU2009–11755 (2009).

    Google Scholar 

  16. J. Bjerknes, “Atlantic Air-Sea Interaction,” Adv. Geophys. 10, 1–82 (1964).

    Article  Google Scholar 

  17. L. Shaffrey and R. Sutton, “Bjerknes Compensation and the Decadal Variability of the Energy Transports in a Coupled Climate Model,” J. Clim. 19(7), 1167–1181 (2006).

    Article  Google Scholar 

  18. J. H. Jungclaus and T. Koenigk, “Low-Frequency Variability of the Arctic Climate: The Role of Oceanic and Atmospheric Heat Transport Variations,” Clim. Dyn. 34, 265–279 (2010).

    Article  Google Scholar 

  19. http://www.ncdc.noaa.gov/oa/climate/igra/index.php

  20. D. J. Gaffen, “A Digitized Metadataset of Global Upper-Air Station Histories,” NOAA. Technical Memorandum ERL-ARL, 211.

  21. Kalnay, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Amer. Meteor. Soc. 77 437–470 (1996).

    Article  Google Scholar 

  22. J. L. Cohen, D. A. Salstein, and R. D. Rosen, “Interannual Variability in the Meridional Transport of Water Vapour,” J. Hydromet. 1, 547–553 (2000).

    Article  Google Scholar 

  23. R. I. Cullather, D. H. Bromwich, and M. C. Serreze, “The Atmospheric Hydrologic Cycle over the Arctic from Reanalyses. Part I. Comparison with Observations and Previous Studies,” J. Clim. 13, 923–937 (2000).

    Article  Google Scholar 

  24. M. Gober, R. Hagenbrock, F. Ament, et al., “Comparing Mass-Consistent Atmospheric Moisture Budgets on an Irregular Grid: An Arctic Example,” Q.J.R. Meteorol. Soc. 129, 2383–2400 (2003).

    Article  Google Scholar 

  25. “Impacts of a Warming Arctic,” in Arctic Climate Impact Assessment (ACIA) (Cambridge University Press, Cambridge, 2004).

  26. S. Kuzmina, O. M. Johannessen, L. Bengtsson, et al., High Northern Latitude Surface Air Temperature: Comparison of Existing Data and Creation of a New Gridded Dataset 1900–2000, SCAR/IASC IPY Open Science Conf (Russia, St. Petersburg, 2008).

  27. M. C. Serreze, A. P. Barrett, J. C. Stroeve, et al., “The Emergence of Surface-Based Arctic Amplification,” Cryosphere 3, 11–19 (2009).

    Article  Google Scholar 

  28. C. Deser, R. Tomas, M. Alexander, et al., “The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century,” J. Clim. 23(2), 333–351 (2010).

    Article  Google Scholar 

  29. P. L. Langen and V. A. Alexeev, “Polar Amplification as a Preferred Response in an Aquaplanet GCM,” Clim. Dyn. 29(2–3), 305–317 (2007).

    Article  Google Scholar 

  30. V. A. Alexeev, R. L. Langen, and J. R. Bates, “Polar Amplification of Surface Warming on an Aquaplanet in Ghost Forcing Experiments without Sea Ice Feed backs,” Climate Dynam. 24(7–8), 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sorokina.

Additional information

Original Russian Text © S.A. Sorokina, I.N. Esau, 2011, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2011, Vol. 47, No. 5, pp. 622–633.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokina, S.A., Esau, I.N. Meridional energy flux in the Arctic from data of the radiosonde archive IGRA. Izv. Atmos. Ocean. Phys. 47, 572–583 (2011). https://doi.org/10.1134/S0001433811050112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433811050112

Keywords

Navigation