Skip to main content
Log in

Comparison of climatic efficiency of the mechanisms of land-surface albedo changes caused by land use

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Changes in ecosystem types, including situations when natural vegetation is replaced by agricultural lands, leads to surface albedo changes and the development of the corresponding short-wave radiative forcing (RF). This work analyzes ensemble numerical experiments with the climatic model (CM) of the Institute of Atmospheric Physics at the Russian Academy of Sciences (IAP RAS) for the 16th–21st centuries. The responses to changes in the contents of greenhouse gases and sulfate aerosols (tropospheric and stratospheric), in the solar constant, and in the land-surface albedo when natural vegetation is replaced by agricultural lands were modeled during these experiments. Different members of these ensemble experiments were obtained by varying the model parameters affecting the RF on the climate during land use: the albedo of agricultural lands was varied within the interval from 0.15 to 0.25 and the parameter controlling the efficiency of snow masking by tree vegetation was varied in the range from the absence of this effect to its maximally possible efficiency. It has been established that changes in surface albedo when natural vegetation is replaced by agricultural lands have the largest influence on the globally averaged annual mean RF at the top of the atmosphere, whereas the influence of snow masking on the RF is substantially less. This phenomenon is caused by the fact that snow masking by tree vegetation can take place only in winter in regions of temperate and high latitudes, when insolation is relatively low. A comparison of the spatial structure of the annual mean response of the surface temperature with the HadCRUT3v and GISS observational data makes it possible to narrow the admissible range of model parameter values. In particular, it can be inferred that the key parameter values which control the influence that land use has on the surface albedo in the IAP RAS CM are close to optimal. In addition, variations in these parameters do not lead to a significant influence of land use on climate change in the 21st century if the Land Use Harmonization (LUH) scenarios of changes in the area of agricultural lands are used: the uncertainty of the model response associated with the uncertainty of values of such controlling parameters in the 21st century does not exceed 0.1 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ramankutty and J. A. Foley, “Estimating Historical Changes in Global Land Cover: Croplands from 1700 to 1992,” Glob. Biogeochem. Cycles 13(4), 997–1027 (1999).

    Article  Google Scholar 

  2. K. Klein Goldewijk, “Estimating Global Land Use Change over the Past 300 Years: the Hyde Database,” Glob. Biogeochem. Cycles 15(2), 417–434 (2001).

    Article  Google Scholar 

  3. N. Ramankutty, A. T. Evan, C. Monfreda, et al., “Farming the Planet: 1. Geographic Distribution of Global Agricultural Lands in the Year 2000,” Glob. Biogeochem. Cycles 22(1), GB1003 (2008).

    Article  Google Scholar 

  4. Anthropogenic Climate Changes, Ed. by M. I. Budyko and Yu. A. Izrael (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  5. G. B. Bonan, D. Pollard, and S. L. Thompson, “Effects of Boreal Forest Vegetation on Global Climate,” Nature 359(6397), 716–718 (1992).

    Article  Google Scholar 

  6. R. A. Betts, “Offset of the Potential Carbon Sink from Boreal Forestation by Decreases in Surface Albedo,” Nature 408(6809), 187–190 (2000).

    Article  Google Scholar 

  7. S. Sitch, V. Brovkin, W. von Bloh, et al., “Impacts of Future Land Cover Changes on Atmospheric and Climate,” Glob. Biogeochem. Cycles 19(2), GB2013 (2005).

    Article  Google Scholar 

  8. V. Brovkin, M. Claussen, E. Driesschaert, et al., “Biogeophysical Effects of Historical Land Cover Changes Simulated by Six Earth System Models of Intermediate Complexity,” Clim. Dyn. 26(6), 587–600 (2006).

    Article  Google Scholar 

  9. Climate Change 2007: The Physical Science Basis, Ed. by. S. Solomon, D. Qin, M. Manning, et al. (New York: Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  10. G. B. Bonan, “Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests,” Science 320(5882), 1444–1449 (2008).

    Article  Google Scholar 

  11. A. J. Pitman, N. de Noblet-Ducoudré, F. T. Cruz, et al., “Uncertainties in Climate Responses to Past Land Cover Change: First Results from the LUCID Intercomparison Study,” Geophys. Res. Lett. 36(14), L14814, (2009).

    Article  Google Scholar 

  12. A. V. Eliseev and I. I. Mokhov, “Effect of Changes in Ground Surface Albedo during Land Use on the Climate of XVI–XXI Centuries: Assessment on the Basis of the IAP RAS Model,” in Problems of Ecological Monitoring and Modeling of Ecosystems), Ed. by Yu. A. Izrael, S. M. Semenov, and V. A. Abakumov (Inst. Global. Klimata Ekol. Rosgidrometa i RAN, Moscow, 2010), Vol. XXIII [in Russian].

    Google Scholar 

  13. A. V. Eliseev and I. I. Mokhov, “Effect of Including Land-Use Driven Radiative Forcing of the Surface Albedo of Land on Climate Response in the 16th–21st Centuries, Izv. Akad. Nauk, Fiz. Atmos. Okeana 47(1), 18–34 (2011). [Izv., Atmos. Ocean. Phys. 47 (1), 15–30 (2011)].

    Google Scholar 

  14. G. Myhre, M. M. Kvalevåg, and C. B. Schaaf, “Radiative Forcing due to Anthropogenic Vegetation Change Based on MODIS Surface Albedo Data,” Geophys. Res. Lett. 32(21), L21410 (2005).

    Article  Google Scholar 

  15. G. Myhre and A. Myhre, “Uncertainties in Radiative Forcing Due to Surface Albedo Changes Caused by Land-Use Changes,” J. Clim. 16(10), 1511–1524 (2003).

    Article  Google Scholar 

  16. J. Pongratz, T. Raddatz, C. H. Reick, et al., “Radiative Forcing from Anthropogenic Land Cover Change since A.D. 800,” Geophys. Res. Lett. 36(2), L02709 (2009).

    Article  Google Scholar 

  17. L. L. Golubyatnikov and E. A. Denisenko, “Effect of the Productivity of Grass Ecosystems on the Underlying-Surface Albedo,” Izv. RAN. Fiz. Atmos. Okeana 39(5), 636–644 (2003). [Izv., Atmos. Ocean. Phys. 39 (5), 573–580 (2003)].

    Google Scholar 

  18. Y. Jin, C. B. Schaaf, F. Gao, et al., “How Does Snow Impact the Albedo of Vegetated Land Surfaces as Analyzed with MODIS Data?,” Geophys. Res. Lett. 29(10), 1374 (2002).

    Article  Google Scholar 

  19. H. D. Matthews, A. J. Weaver, K. J. Meissner, et al., “Natural and Anthropogenic Climate Change: Incorporating Historical Land Cover Change, Vegetation Dynamics and the Global Carbon Cycle,” Clim. Dyn. 22(5), 461–479 (2004).

    Article  Google Scholar 

  20. J. Feddema, K. Oleson, G. Bonan, et al., “A Comparison of a GCM Response to Historical Anthropogenic Land Cover Change and Model Sensitivity to Uncertainty in Present-Day Land Cover Representations,” Clim. Dyn. 25(6), 581–609 (2009).

    Article  Google Scholar 

  21. V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, et al., The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).

    Google Scholar 

  22. D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. 104(D22), 27253–27275 (1999).

    Article  Google Scholar 

  23. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Assessment with the IAP RAS Global Model,” Dokl. Akad. Nauk 402(2), 243–247 (2005) [Doklady Earth Sci. 402 (4), 591–595 (2005)].

    Google Scholar 

  24. V. K. Petukhov, “Zonal Climate Model of Heat and Moisture Exchange in the Atmosphere above the Ocean,” in Atmospheric Physics and Climate Problems, Ed. by G. S. Golitsyn and A. M. Yaglom (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  25. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(5), 591–601 (2007). [Izv., Atmos. Ocean. Phys. 43 (5), 554–564 (2007)].

    Google Scholar 

  26. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, Climate Change Research Trends, Ed. by L. N. Peretz (Hauppauge Nova Sci. Publ., New York, 2008), pp. 217–241).

    Google Scholar 

  27. A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., “Interaction of the Methane Cycle and Processes in Wetland Ecosystems in a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(2), 147–162 (2008) [Izv., Atmos. Ocean. Phys. 44 (2), 139–152 (2008)].

    Google Scholar 

  28. A. V. Elissev and I. I. Mokhov, “Amplitude-Phase Characteristics of the Annual Cycle of Air Temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 20(1), 1–16 (2003).

    Google Scholar 

  29. V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Responses to Atmospheric CO2 Doubling,” Clim. Dyn. 25(4), 363–385 (2005).

    Article  Google Scholar 

  30. A. V. Eliseev and I. I. Mokhov, “Influence of Volcanic Activity on Climate Change in the Past Several Centuries: Assessments with a Climate Model of Intermediate Complexity, Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(6), 723–746 (2008) [Izv., Atmos. Ocean. Phys. 44 (6), 671–683 (2008)].

    Google Scholar 

  31. R. E. Dickinson, A. Henderson-Sellers, P. J. Kennedy, et al., Biosphere-Atmosphere Transfer Scheme (BATS), NCAR TN-275-STR (Naval Weather Service, Boulder, Colo, 1986).

    Google Scholar 

  32. R. A. Monserud and R. Leemans, “Comparing Global Vegetation Maps with the Kappa Statistic,” Ecol. Mod. 62(4), 275–293 (1992).

    Article  Google Scholar 

  33. R. Leemans, Global Data Sets Collected and Compiled by the Biosphere Project. International Institute for Applied System Analysis, Laxenburg, 1990.

    Google Scholar 

  34. G. C. Hurtt, L. P. Chini, S. Frolking, et al., “Harmonization of Global Land-Use Scenarios for the Period 1500–2100 for IPCC-AR5,” Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) Newsletter, No. 7, 6–8 (2009).

  35. G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” in Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., 2005.

    Google Scholar 

  36. R.A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus 55B(2), 378–390 (2003).

    Google Scholar 

  37. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, et al., “Model Estimates of Global Climatic Changes in the 21st Century with Account for Different Variation Scenarios of Solar Activity,” Dokl. Akad. Nauk 411(2), 250–253 (2006) [Dokl. Earth Sci., 411 (8), 1327–1330 (2006)].

    Google Scholar 

  38. C. MacFarling Meure, D. Etheridge, C. Trudinger, et al., Law Dome and Ice Core Records Extended to 2000 Years Bp, Geophys. Res. Lett. 33(14), L14810 (2006).

    Article  Google Scholar 

  39. S. J. Walker, R. F. Weiss, and P. K. Salameh, “Reconstructed Histories of the Annual Mean Atmospheric Mole Fractions for the Halocarbons CFC-11, CFC-12, CFC-113 and Carbon Tetrachloride,” J. Geophys. Res. 105(C6), 14285–14296 (2000).

    Article  Google Scholar 

  40. L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. 111(D22), D22211 (2006).

    Article  Google Scholar 

  41. Y.-M. Wang, J. Lean, and N. R. Sheeley, “Modeling the Sun’s Magnetic Field and Irradiance since 1713,” Astrophys. J. 625(1), 522–538 (2005).

    Article  Google Scholar 

  42. A. Robertson, J. Overpeck, D. Rind, et al., “Hypothesized Climate Forcing Time Series for the Last 500 Years,” J. Geophys. Res. 106(D14), 14783–14804 (2001).

    Article  Google Scholar 

  43. C. M. Ammann, G. A. Meehl, W. M. Washington, et al., “A Monthly and Latitudinally Varying Volcanic Forcing Dataset in Simulations of 20th Century Climate,” Geophys. Res. Lett. 30(12), 1657 (2003).

    Article  Google Scholar 

  44. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge University Press, Cambridge, New York, 2001).

    Google Scholar 

  45. M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18(7), 579–586 (2002).

    Article  Google Scholar 

  46. K. E. Taylor, “Summarizing Multiple Aspects of Model Performance in a Single Diagram,” J. Geophys. Res. 106(D7), 7183–7192 (2001).

    Article  Google Scholar 

  47. T. J. Philips, A. Henderson-Sellers, P. Irannejad, et al., Validation of Land-Surface Processes in AMIP Models: A Pilot Study. PCMDI Rep. 63. Livermore, CA: Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, 2000.

    Google Scholar 

  48. A. V. Eliseev, I. I. Mokhov, M. S. Guseva, et al., Research Activities in Atmospheric and Oceanic Modelling, WMO TD-No. 1161, Ed. by J. Côté (World Climate Research Programme, Genewa, 2003), pp. 02.05–02.06.

    Google Scholar 

  49. A. V. Eliseev, M. S. Guseva, I. I. Mokhov, et al., “The Amplitude-Phase Characteristics of the Near-Surface Air Temperature in the Models of the Atmosphere and Climate,” in Abstr. World Conference on Climate Change (Inst. Global. Klimata Ekologii Rosgidrometa i RAN, Moscow, 2004), p. 490.

    Google Scholar 

  50. A. V. Eliseev, M. S. Guseva, I. I. Mokhov, et al., “Amplitude-Phase Characteristics of the Annual Cycle of Surface Temperature: Comparison of AGCM Output and Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40(4), 435–449 (2004). [Izv. Atmos. Ocean Phys. 40 (4), 381–393 (2004)].

    Google Scholar 

  51. A. V. Eliseev, I. I. Mokhov, K. G. Rubinstein, et al., “Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle,” Adv. Atmos. Sci. 21(6), 837–847 (2004).

    Article  Google Scholar 

  52. P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850,” J. Geophys. Res. 111(D12), D12106 (2006).

    Article  Google Scholar 

  53. J. Hansen, R. Ruedy, J. Glascoe, et al., “GISS Analysis of Surface Temperature Change,” J. Geophys. Res. 104(D24), 30997–31022 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Original Russian Text © A.V. Eliseev, 2011, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2011, Vol. 47, No. 3, pp. 318–329.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V. Comparison of climatic efficiency of the mechanisms of land-surface albedo changes caused by land use. Izv. Atmos. Ocean. Phys. 47, 290–300 (2011). https://doi.org/10.1134/S0001433811030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433811030042

Keywords

Navigation