Skip to main content
Log in

On the effect that the direction of geostrophic wind has on turbulence and quasiordered large-scale structures in the atmospheric boundary layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The dependence that the structure and intensity of turbulent and large-scale quasiordered eddies in the atmospheric boundary layer (ABL) have on the direction of geostrophic wind has been studied on the basis of a series of numerical experiments with a three-dimensional nonstationary model of high spatial resolution. The presence of the meridional component of the angular velocity of the Earth’s rotation results in a significant intensification of velocity fluctuations in a neutrally stratified turbulent flow during the easterly and northeasterly winds and in their decay during the westerly and southwesterly winds. This, in turn, results in significant variations in the mean velocity profile. It is shown that these variations are associated with the largest scale fluctuations and are comparable (in scale) to the depth of Ekman’s turbulent layer. It is found that, in the neutrally stratified ABL bounded in height and under stable stratification inside the ABL, the wind-direction dependence significantly decreases. The possibilities of parameterizing these effects in locally one-dimensional ABL models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hoyas and J. Jimenez, “Scaling of the Velocity Fluctuations in Turbulent Channels up to Reτ = 2003,” Center for Turbulence Research Annual Research Briefs, 351–356 (2005).

  2. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 1. Formulation of the Problem, Model Description, and Diagnostic Numerical Tests,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45(1), 7–28 (2009) [Izv., Atmos. Ocean. Phys. 45 (1), 5–24 (2009)].

    Google Scholar 

  3. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 2. Numerical Experiments: Simulating Turbulence in a Channel with Rough Boundaries,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45(1), 29–42 (2009) Izv. Akad. Nauk, Fiz. Atmos. Okeana 45 (1), 25–36 (2009)].

    Google Scholar 

  4. B. J. Balakumar and R. J. Adrian, “Largeand Very Large-Scale Motions in Channel and Boundary-Layer Flows,” Philos. Trans. R. Soc. London Ser. A 365 665–681 (2007).

    Article  Google Scholar 

  5. I. Esau, “The Coriolis Effect on Coherent Structures in Planetary Boundary Layers,” J. Turbulence 4(1), 17 (2003).

    Google Scholar 

  6. J. P. Johnston, R. M. Halleen, and D. K. Lezius, “Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow,” J. Fluid Mech. 56(3 P), 533–557 (1972).

    Article  Google Scholar 

  7. P. Bradshaw, “The Analogy between Streamline Curvature and Buoyancy in Turbulent Shear Flow,” J. Fluid Mech. 36(1), 177–191 (1969).

    Article  Google Scholar 

  8. R. Kristoffersen and H. I. Andersson, “Direct Simulation of Low Reynolds Number Turbulent Flow in a Rotating Channel,” J. Fluid Mech. 256, 163–197 (1993).

    Article  Google Scholar 

  9. U. Piomelli and J. Liu, “Large-Eddy Simulation of Rotating Channel Ows using a Localized Dynamic Model,” Phys. Fluids 7(4), 839–848 (1995).

    Article  Google Scholar 

  10. D. K. Tafti and S. P. Vanka, “A Numerical Study of the Effects of Spanwise Rotation on Turbulent Channel Flow,” Phys. Fluids A 3(4), 642–657 (1991).

    Article  Google Scholar 

  11. R. W. Garwood, P. C. Gallacher, and P. Muller, “Wind Direction and Equilibrium Mixed Layer Depth: General Theory,” J. Phys. Oceanogr. 15(10), 1325–1331 (1985).

    Article  Google Scholar 

  12. R. W. Garwood, P. Muller, and P. C. Gallacher, “Wind Direction and Equilibrium Mixed Layer Depth in the Tropical Pacific Ocean,” J. Phys. Oceanogr. 15(10), 1332–1338 (1985).

    Article  Google Scholar 

  13. B. Galperin, A. Rosati, L. H. Kantha, et al., “Modeling Rotating Stratified Turbulent Flows with Application to Oceanic Mixed Layers,” J. Phys. Oceanogr. 19(7), 901–916 (1989).

    Article  Google Scholar 

  14. O. Zikanov, D. N. Slinn, and M. Dhanak, “Large-Eddy Simulations of the Wind-Induced Turbulent Ekman Layer,” J. Fluid Mech. 495, 343–368 (2003).

    Article  Google Scholar 

  15. J. C. McWilliams and E. Huckle, “Ekman Layer Rectification,” J. Phys. Oceanogr. 36(8), 1646–1659 (2006).

    Article  Google Scholar 

  16. D. K. Lilly, “On the Instability of Ekman Boundary Flow,” J. Atmos. Sci. 23(5), 481–494 (1966).

    Article  Google Scholar 

  17. F. Wippermann, “The Orientation of Vortices due to Instability of Ekman Boundary Layer,” Beitr. Phys. Atmos. 42, 225–244 (1969).

    Google Scholar 

  18. R. Brown, “A Secondary Flow Model for the Planetary Boundary Layer,” J. Atmos. Sci. 27(5), 742–757 (1970).

    Article  Google Scholar 

  19. S. Leibovich and S. K. Lele, “The Influence of the Horizontal Component of Earth’s Angular Velocity on the Instability of the Ekman Layer,” J. Fluid Mech. 150, 41–87 (1985).

    Article  Google Scholar 

  20. T. M. Haeusser and S. Leibovich, “Amplitude and Mean Drift Equations for the Oceanic Ekman Layer,” Phys. Rev. Lett. 79(2), 329–332 (1997).

    Article  Google Scholar 

  21. T. M. Haeusser and S. Leibovich, “Pattern Formation in the Marginally Unstable Ekman Layer,” J. Fluid Mech. 479, 125–144 (2003).

    Article  Google Scholar 

  22. V. M. Ponomarev, O. G. Chkhetiani, and L. V. Shestakova, “Numerical Modeling of Developed Horizontal Circulation in the Atmospheric Boundary Layer,” Vychislit. Mekhan. Sploshn. Sred 2(1), 68–80 (2009).

    Google Scholar 

  23. G. N. Coleman, “Similarity Statistics from a Direct Numerical Simulation of the Neutrally Stratified Planetary Boundary Layer,” J. Atm. Sci. 56(6), 891–900 (1999).

    Article  Google Scholar 

  24. J. W. Glendening, “Lineal Eddy Features under Strong Shear Conditions,” J. Atm. Sci. 53(23), 3430–3449 (1996).

    Article  Google Scholar 

  25. T. J. Gerkema, T. F. Zimmerman, L. R. M. Maas, et al., “Geophysical and Astrophysical Fluid Dynamics beyond the Traditional Approximation,” Rev. Geophys. 46, 33 (2008).

    Article  Google Scholar 

  26. S. D. Nicholls and G. S. Young, “Dendritic Patterns in Tropical Cumulus: An Observational Analysis,” Mon. Weather Rev. 135(5), 1994–2005 (2007).

    Article  Google Scholar 

  27. M. Germano, “Turbulence: The Filtering Approach,” J. Fluid Mech. 238, 325–336 (1992).

    Article  Google Scholar 

  28. M. Germano, U. Piomelli, P. Moin, et al., “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A 3(7), 1760–1765 (1991).

    Article  Google Scholar 

  29. D. K. Lilly, “A Proposed Modification of the Germano Subgrid-Scale Closure Method,” Phys. Fluids A 4(3 P), 633–635 (1992).

    Article  Google Scholar 

  30. S. Ghosal, T. S. Lund, P. Moin, et al., “A Dynamic Localization Model for Large Eddy Simulation of Turbulent Flows,” J. Fluid Mech. 286, 229–255 (1995).

    Article  Google Scholar 

  31. Y. Morinishi, T. S. Lund, O. V. Vasilyev, et al., “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow,” J. Comp. Phys. 143(1), 90–124 (1998).

    Article  Google Scholar 

  32. P. R. Spalart, G. N. Coleman, and R. Johnstone, “Direct Numerical Simulation of the Ekman Layer: a Step in Reynolds Number, and Cautious Support for a Log Law with a Shifted Origin,” Phys. Fluids 20(10), 101507–101515 (2008).

    Article  Google Scholar 

  33. P. R. Spalart, G. N. Coleman, and R. Johnstone, “Retraction: “Direct Numerical Simulation of the Ekman Layer: A Step in Reynolds Number, and Cautious Support for a Log Law with a Shifted Origin,” Phys. Fluids 20 101507 (2008),” Phys. Fluids 21(10), 109901–109903 (2009).

    Article  Google Scholar 

  34. C. G. Rossby and R. B. Montgomery, “The Layers of Frictional Influence in Wind and Ocean Currents,” Phys. Oceanogr. Meteorol. 3(3), 1–101 (1935).

    Google Scholar 

  35. S. S. Zilitinkevich, “Velocity Profiles, Resistance Laws and Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer,” Bound. Layer Meteorol. 46(4), 367–387 (1989).

    Article  Google Scholar 

  36. J. H. Watmuff, H. T. Witt, and P. N. Joubert, “Developing Turbulent Boundary Layers with System Rotation,” J. Fluid Mech. 157, 405–448 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Glazunov.

Additional information

Original Russian Text © A.V. Glazunov, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 6, pp. 786–807.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazunov, A.V. On the effect that the direction of geostrophic wind has on turbulence and quasiordered large-scale structures in the atmospheric boundary layer. Izv. Atmos. Ocean. Phys. 46, 727–747 (2010). https://doi.org/10.1134/S0001433810060058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810060058

Keywords

Navigation