Skip to main content
Log in

Modeling the convective cloudiness and its impact on the atmospheric gaseous composition

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A combined three-dimensional numerical model of convective cloudiness with detailed microphysics and a model of the transport of atmospheric trace gases with gas- and aqueous-phase chemistry were developed. We consider the main physical mechanisms responsible for the formation of midsized droplet clouds and the transport of gases with differing solubility therein. Test numerical calculations were performed to investigate the sensitivity of the cloud model to variations in input parameters, as well as the variability of the ion composition of cloud drops with regard to their size distribution. The results of numerical calculations are presented with a preliminary analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berresheim, M. O. Andreae, G. P. Ayers, et al., “Airborne Measurements of Dimethylsulfide, Sulfur Dioxide and Aerosol Ions over the Southern Ocean South of Australia,” J. Atmos. Chem. 10(3), 341–370 (1990).

    Article  Google Scholar 

  2. R. C. Costen, G. M. Tennille, and J. S. Levine, “Cloud Pumping in a One-Dimensional Photochemical Model,” J. Geophys. Res. 93(D12), 15941–15954 (1988).

    Article  Google Scholar 

  3. K. E. Pickering, R. R. Dickerson, G. J. Huffman, et al., “Trace Gas Transport in the Vicinity of Frontal Convective Clouds,” J. Geophys. Res. 93(1), 759–773 (1988).

    Article  Google Scholar 

  4. W. R. Cotton, G. D. Alexander, R. Hertenstein, et al., “Cloud Venting—a Review and Some New Global Annual Estimates,” Earth Sci. Rev., No. 1, 169–206 (1995).

  5. T. L. Clark, “Numerical Modeling of the Dynamics and Microphysics of Warm Cumulus Convection,” J. Atmos. Sci. 30(7), 857–878 (1973).

    Article  Google Scholar 

  6. G. Arnason and R. S. Greenfield, “Micro- and Macro-Structures of Numerically Simulated Convective Clouds,” J. Atmos. Sci. 29(3), 342–367 (1972).

    Article  Google Scholar 

  7. S.-T. Soong, “Numerical Simulation of Warm Rain Development in an Axisymmetric Cloud Model,” J. Atmos. Sci. 31(7), 1232–1240 (1974).

    Google Scholar 

  8. W. D. Hall, “A Detailed Microphysical Model within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results,” J. Atmos. Sci. 37(11), 2486–2507 (1980).

    Article  Google Scholar 

  9. J. Shiino, “Evolution of Raindrops in a Axisymmetric Cumulus Model. Pt I: Comparison of the Parameterized with Non-Parameterized Microphysics,” J. Meteorol. Soc. Japan 61(4), 629–655 (1983).

    Google Scholar 

  10. Y. L. Kogan, “The Simulation of a Convective Cloud in a 3-D Model with Explicit Microphysics. Pt I: Model Description and Sensitivity Experiments,” J. Atmos. Sci. 48(9), 1160–1189 (1991).

    Article  Google Scholar 

  11. T. Takahashi, “Warm Rain Study in Hawaii-Rain Initiation,” J. Atmos. Sci. 38(2), 347–369 (1981).

    Article  Google Scholar 

  12. S. M. Kreidenweis, Y. Zhang, and G. R. Taylor, “The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. 2. Chemistry Model Description and Sensitivity Analysis,” J. Geophys. Res. 102(D20), 867–882 (1997).

    Article  Google Scholar 

  13. G. R. Taylor, S. M. Kreidenweis, and Y. Zhang, “The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. 1. Cloud Model Formulation, Mixing, and Deterainment,” J. Geophys. Res. 102(D20), 851–861 (1997).

    Article  Google Scholar 

  14. Y. Zhang, S. M. Kreidenweis, and G. R. Taylor, “The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. 3. Aerosol Model Description and Sensitivity Analysis,” J. Atmos. Sci. 55(6), 921–939 (1998).

    Article  Google Scholar 

  15. I. L. Karol’, M. A. Zatevakhin, N. A. Ozhigina, et al., “Numerical Model for Convective Cloud Dynamics, Microphysics, and Photochemistry,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(6), 1–16 (2000) [Izv., Atmos. Ocean. Phys. 41 (6), 715–729 (2000)].

    Google Scholar 

  16. J. W. Deardorff, “A Numerical Study of 3D Turbulent Channel Flow to Large Reynolds Numbers,” J. Fluid Mechanics 41(2), 453–480 (1970).

    Article  Google Scholar 

  17. T. Gal-Chen and C. J. Somerville, “Numerical Solution of the Navier-Stokes Equations with Topography,” J. Comp. Phys. 17(3), 276–310 (1975).

    Article  Google Scholar 

  18. D. Lilly, “On the Numerical Simulation of Buoyant Convection,” Tellus 14(2), 148–172 (1962).

    Article  Google Scholar 

  19. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).

    Google Scholar 

  20. W. Mordy, “Computations of the Growth by Condensation of a Populations Cloud Drops,” Tellus 11(1), 11–64 (1959).

    Article  Google Scholar 

  21. J. W. Fitzgerald, “Effect of Aerosol Composition on Cloud Droplet Size Distribution: A Numerical Study,” J. Atmos. Sci. 31(5), 1358–1367 (1974).

    Article  Google Scholar 

  22. A. E. Aloyan, Simulation of Dynamics and Kinetics of Gas Admixtures and Aerosols in the Atmosphere (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  23. A. E. Aloyan, A. N. Ermakov, V. O. Arutyunyan, et al., “Dynamics of Gas Admixtures and Aerosols in the Atmosphere with Allowance for Heterogenic Processes on Particle Surface,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(5) (2010) (in press).

  24. Transport and Chemical Transformation of Pollutants in the Troposphere. Heterogeneous and Liquid Phase Processes, Ed. by P. Warneck (Springer, Berlin-Heidelberg, 1995).

    Google Scholar 

  25. T. W. Choularton, R. N. Colville, K. N. Bower, et al., “The Great Dun Fell Cloud Experiment 1993: An Overview,” Atm. Env. 31(16), 2393–2405 (1997).

    Article  Google Scholar 

  26. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics. From Air Pollution to Climate Change (Wiley, New York, 1998).

    Google Scholar 

  27. J. Ziajka, F. Beer, and P. Warneck, “Iron-Catalysed Oxidation of Bisulphite Aqueous Solution: Evidence for a Free Radical Chain Mechanism,” Atm. Env. 28(15), 2549–2552 (1994).

    Article  Google Scholar 

  28. H.-J. Benkelberg and P. Warneck, “Photodecomposition of Iron(III) Hydroxo and Sulfato Complexes in Aqueous Solution: Wavelength Dependence of OH and Quantum Yields,” J. Phys. Chem. 99(14), 5214–5221 (1995).

    Article  Google Scholar 

  29. R. L. Mauldine, S. Madronich, S. J. Flocke, et al., “New Insights on OH: Measurements around and in Clouds,” Geophys. Res. Lett. 24(23), 3033–3036 (1997).

    Article  Google Scholar 

  30. W. L. Chameides and D. D. Davis, “The Free Radical Chemistry of Cloud Droplets and Its Impact upon the Composition of Rain,” J. Geophys. Res. 87(C7), 4863 (1982).

    Article  Google Scholar 

  31. C. Seigneur and P. Saxena, “A Study of Atmospheric Acid Formation in Different Environments,” Atm. Env. 18(10), 2109–2124 (1984).

    Article  Google Scholar 

  32. T. E. Graedel, M. L. Mandich, and C. J. Weschler, “Kinetic Model Studies of Atmospheric Droplet Chemistry: 2. Homogeneous Transition Metal Chemistry in Drop,” J. Geophys. Res. 91(D4), 5205–5221 (1986).

    Article  Google Scholar 

  33. M. W. Gery, G. Z. Whitten, J. P. Killus, et al., “A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling,” J. Geophys. Res. 94(D10), 12925–12956 (1989).

    Article  Google Scholar 

  34. J. Matthijsen, P. J. H. Builtjes, and D. L. Sedlak, “Cloud Model Experiments of the Effect of Iron and Copper on Tropospheric Ozone under Marine and Continental Conditions,” Meteor. Atmos. Phys. 57(1–4), 43–60 (1995).

    Article  Google Scholar 

  35. H. Herrmann, B. Ervens, H.-W. Jacobi, et al., “CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry,” J. Atmos. Chem. 36(3), 231–284 (2000).

    Article  Google Scholar 

  36. D. J. Jacob, “Chemistry of OH in Remote Clouds and Its Role in the Production of Formic Acid and Peroxomonosulfate,” J. Geophys. Res. 91(D9), 9807–9826 (1986).

    Article  Google Scholar 

  37. D. J. Jacob, E. W. Gottlieb, and M. J. Prather, “Chemistry of a Polluted Cloudy Boundary Layer,” J. Geophys. Res. 94(D10), 12975–13002 (1989).

    Article  Google Scholar 

  38. A. N. Yermakov, I. K. Larin, A. P. Purmal’, et al., “Iron Catalysis of SO2 Oxidation in the Atmosphere,” Kinet. Katal. 44(4), 524–537 (2003) [Kinet. Catal. 44 (4), 476–489 (2003)].

    Article  Google Scholar 

  39. S. E. Schwartz, Gas-Aqueous Reactions of Sulfur and Nitrogen Oxides in Liquid-Water Clouds. Acid Precipitation Series (Butterworth, Boston, 1984), Vol. 3, Chapter 4, pp. 173–208.

    Google Scholar 

  40. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965), Part 1 [in Russian].

    Google Scholar 

  41. G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  42. I. P. Mazin and S. M. Shmeter, Clouds: Structure and Formation Physics (Gidrometoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  43. S. M. Rozhanets, A. L. Furman, and S. M. Shmeter, “Over-Cloud Retarding Layers and Their Relationship with Cumulus Clouds,” Tr. TsAO, No. 128, 73–80 (1976).

  44. H. Elias, U. Gotz, and K. J. Wannowius, “Kinetics and Mechanism of the Oxidation of S(IV) by Peroxomonosulphuric Acid Anion,” Atm. Env. 28(4), 439–448 (1994).

    Google Scholar 

  45. A. S. Wexler and S. L. Clegg, “Atmospheric Aerosol Models for System Including the Ions H+, NH +4 , Na+, SO 2−4 , NO 3 , Cl, Br, and H2O,” J. Geophys. Res. 107(D14), 1–14 (2002).

    Article  Google Scholar 

  46. J. R. Brock and J. L. Durham, SO 2, NO, and NO 2 Oxidation Mechanisms: Atmospheric Considerations, Ed. by J. G. Calvert (Butterworth, Boston, 1984).

    Google Scholar 

  47. P. Behra and L. Sigg, “Evidence for Redox Cycling of Iron in Atmospheric Water Droplets,” Nature 344(6265), 419–421 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Aloyan.

Additional information

Original Russian Text © A.E. Aloyan, A.N. Yermakov, V.O. Arutyunyan, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 6, pp. 771–785.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aloyan, A.E., Yermakov, A.N. & Arutyunyan, V.O. Modeling the convective cloudiness and its impact on the atmospheric gaseous composition. Izv. Atmos. Ocean. Phys. 46, 713–726 (2010). https://doi.org/10.1134/S0001433810060046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810060046

Keywords

Navigation