Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations


The INMCM3.0 climate model has formed the basis for the development of a new climate-model version: the INMCM4.0. It differs from the previous version in that there is an increase in its spatial resolution and some changes in the formulation of coupled atmosphere-ocean general circulation models. A numerical experiment was conducted on the basis of this new version to simulate the present-day climate. The model data were compared with observational data and the INMCM3.0 model data. It is shown that the new model adequately reproduces the most significant features of the observed atmospheric and oceanic climate. This new model is ready to participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5), the results of which are to be used in preparing the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC).

This is a preview of subscription content, log in to check access.


  1. 1.

    “IPCC Third Assessment Report,” in Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Gridds, et al. (Cambridge University Press, Cambridge, 2001).

  2. 2.

    IPCC Fourth Assessment Report in “Intergovernmental Panel on Climate Change”, Ed. by S. D. Solomon, D. Qin, M. Manning, et al. (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  3. 3.

    WMO: World Meteorological Organization. The Physical Basis of Climate and Climate Modelling, GARP Publications, Ser. 16 (WMO, Geneva, 1975; Gidrometeoizdat, Leningrad, 1977).

  4. 4.

    V. P. Dymnikov and A. N. Filatov, Bases of Mathematical Climate Theory (VINITI, Moscow, 1994) [in Russian].

    Google Scholar 

  5. 5.

    S. Manab and K. Bryan, “Climate and the Ocean Circulation,” Mon. Wea. Rev. 97, 739–827 (1969).

    Article  Google Scholar 

  6. 6.

    G. I. Marchuk, V. P. Dymnikov, V. N. Lykosov, et al., Hydrodynamic Model of General Circulation of the Atmosphere and Ocean (Methods of Realization) (VTs SOAN SSSR, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  7. 7.

    G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, et al., Mathematical Modeling of General Circulation of the Atmosphere and Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  8. 8.

    C. Covey, “AchutaRao K.M., Lambert S.J., et al., Intercomparison of Present and Future Climates Simulated by Coupled Ocean-Atmosphere GCMs,” PCMDI Report, No. 66, 1–20 (2000).

  9. 9.

    V. P. Meleshko, V. M. Kattsov, P. V. Sporyshev, et al., “Study of Possible Climate Changes using Models of General Circulation of the Atmosphere and Ocean,” in Climate Changes and Their Consequences. Proc. Special Session of Academic Council of the Center of International Cooperation on Environmental Problems Dedicated to the 80s Anniversary of Academician M.I. Budyko (May 19–20, 1999) (Nauka, St. Petersburg, 2002), pp. 13–35 [in Russian].

    Google Scholar 

  10. 10.

    I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(5), 629–642 (2002) [Izv., Atmos. Ocean. Phys. 38 (5), 555–564 (2002)].

    Google Scholar 

  11. 11.

    M. Claussen, A. Mysak, A. J. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Climate Dynamics 18(7), 579–586 (2002).

    Article  Google Scholar 

  12. 12.

    K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, et al., “Validating and Assessing the Sensitivity of the Climate Model with an Ocean General Circulation Model Developed at the Institute of Atmospheric Physics, Russian Academy of Sciences,” Izv. Akad. Nauk, Fiz. Atm. Okeana 45(4), 448–466 (2009) [Izv., Atmos. Ocean. Phys. 45 (4), 416–433 (2009)].

    Google Scholar 

  13. 13.

    E. M. Volodin and N. A. Diansky, “imulation of Climate Changes in the 20th–22nd Centuries with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(3), 291–306 (2006) [Izv., Atmos. Ocean. Phys. 42 (3), 267–281 (2006)].

    Google Scholar 

  14. 14.

    N. A. Diansky and E. M. Volodin, “Simulation of Present-Day Climate with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(6), 824–840 (2002) [Izv., Atmos. Ocean. Phys. 38 (6), 732-747 (2002)].

    Google Scholar 

  15. 15.

    D. A. Randall, R. A. Wood, S. Bony, et al., “Climate Models and Their Evaluation,” in Climate Change 2007. The Physical Science Basis (Cambridge University Press, Cambridge, 2007), pp. 589–662.

    Google Scholar 

  16. 16.

    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al., “Modern Climate Simulation using the Atmosphere Model Developed at IVM RAN,” Preprint No. I, IVM RAN (1998).

  17. 17.

    V. Ya. Galin, E. M. Volodin, and S. P. Smyshlyaev, “Model of General Atmosphere Circulation Developed at IVM RAN with Ozone Dynamics,” Meteorol. Gidrol., No. 5, 13–23 (2003).

  18. 18.

    V. Ya. Galin, “Parametrization of Radiative Processes in the DNM Atmospheric Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(3), 380–389 (1998) [Izv., Atmos. Ocean. Phys., 34 (3), 339–347 (1998)].

    Google Scholar 

  19. 19.

    A. K. Betts, “A New Convective Adjustment Scheme. Pt 1. Observational and Theoretical Basis,” Quart. J. R. Meteorol. Soc. 112, 677–691 (1986).

    Google Scholar 

  20. 20.

    T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a Systematic Westerly Bias in General Circulation and Numerical Weather Prediction Models through an Orographic Gravity Wave Drag Parameterization,” Quart. J. R. Meteorol. Soc. 112, 1001–1031 (1986).

    Article  Google Scholar 

  21. 21.

    C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. 2. Broad and Quasimonochromatic Spectra, and Implementation,” J. Atm. Sol. Terr. Phys. 59(4), 387–400 (1997).

    Article  Google Scholar 

  22. 22.

    E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(4), 453–465 (1998) [Izv., Atmos. Ocean. Phys., 34 (4), 405–416 (1998)].

    Google Scholar 

  23. 23.

    A. V. Gusev, Candidate’s Dissertation in Mathematical Physics (IVM RAN, Moscow, 2009).

    Google Scholar 

  24. 24.

    G. I. Marchuk, Methods of Numerical Mathematics, 2nd ed. (Nauka, Moscow, 1980; Springer, New York, 1975).

    Google Scholar 

  25. 25.

    S. M. Griffies, “Some Ocean Models Fundamentals” in Ocean Weather Forecasting: an Integrated View of Oceanography, Ed. by E. P. Chassignet and J. Verron (Springer, Berlin, 2005), pp. 19–74.

    Google Scholar 

  26. 26.

    N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39(3), 394–409 (2003) [Izv., Atmos. Ocean. Phys., 39 (3), 355–568 (2003)].

    Google Scholar 

  27. 27.

    E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Sea Ice Dynamics,” J. Phys. Oceanogr. 27(9), 1849–1867 (1997).

    Article  Google Scholar 

  28. 28.

    E. M. Volodin, “Model’ obshchei tsirkulyatsii atmosfery i okeana s uglerodnym tsiklom,” Izv. RAN Fizika Atmosfery i Okeana 43(3), 298–313 (2007).

    Google Scholar 

  29. 29.

    E. M. Volodin, “Methane Cycle in the INM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(2), 163–170 (2008) [Izv., Atmos. Ocean. Phys., 44 (2), 153–159 (2008)].

    Google Scholar 

  30. 30.

    M. Steele, R. Morley, and W. Ermold, “PHC: A Global Ocean Hydrography with a High Quality Arctic Ocean,” J. Clim. 14, 2079–2087 (2001).

    Article  Google Scholar 

  31. 31.

    E. Kalnay and M. Kanamitsu, et al., “The NCEP/NCAR 40 Year Reanalysis Project,” Bull. Am. Met. Soc. 77(3), 437–471 (1996).

    Article  Google Scholar 

  32. 32.

    B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, et al., “Clouds and Thr Earth Radiant Energy System (CERES): An Earth Observing System Experiment,” Bull. Amer. Meteor. Soc. 77(5), 853–868 (1996).

    Article  Google Scholar 

  33. 33.

    Y. C. Zhang, W. B. Rossow, A. A. Lacis, et al., “Calculation of Radiative Fluxes from the Surface to Top of Atmosphere Based on Isccp and Other Global Data Sets: Refinements of the Radiative Transfer Model and Input Data,” J. Geophys. Res. 109(D19) D19105, doi: 10.1029/2003JD004457 (2004).

    Article  Google Scholar 

  34. 34.

    S. M. Uppala, and coauthors, “The ERA-40 Reanalysis,” Quart. J. Roy. Meteor. Soc. 131(610), 2961–3012 (2005).

    Article  Google Scholar 

  35. 35.

    W. B. Rossow and E. Duenas, “The International Satellite Cloud Climatology Project (ISCCP) Web Site: An Online Resource for Research,” Bull. Amer. Meteor. Soc. 85(2), 167–172 (2004).

    Article  Google Scholar 

  36. 36.

    P. Xie and P. A. Arkin, “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs,” Bull. Amer. Met. Soc. 78(11), 2539–2558 (1997).

    Article  Google Scholar 

  37. 37.

    K. E. Trenberth, L. Smith, T. Qian, et al., “Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data,” J. Hydrometeor. 8(4), 758–769 (2007).

    Article  Google Scholar 

  38. 38.

    D. A. Robinson, K. F. Dewey, and R. R. Heim, “Global Snow Cover Monitoring: an Update,” Bull. Amer. Met. Soc. 74(9), 1689–1696 (1993).

    Article  Google Scholar 

  39. 39.

    T. Zhang, R. G. Barry, K. Knowles, et al., “Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere,” Polar Geogr. 23(2), 132–154 (1999).

    Article  Google Scholar 

  40. 40.

    T. Zhang, R. G. Barry, K. Knowles, et al., “Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere,” in Permafrost: Proc. of Eighth Intern. Conf. Permafrost, Ed. by M. Phillips, S. M. Springman, and L. U. Arenson (2003), pp. 1284–1289.

  41. 41.

    N. A. Rayner, D. E. Parker, E. B. Horton, et al., “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century,” J. Geophys. Res. 108(D14), 4407, doi: 10.1029/2002JD002670 (2003).

    Article  Google Scholar 

  42. 42.

    P. S. Willem, M. Bates, and M. H. England, Can Isopycnal Mixing Control the Stability of the Thermohaline Circulation in Ocean Climate Models? J. Climate. 19(22), 5637–5651 (2006).

    Google Scholar 

  43. 43.

    J. W. Hurrell, J. J. Hack, D. Shea, et al., “A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model,” J. Clim. 21(19), 5145–5153 (2008).

    Article  Google Scholar 

  44. 44.

    G. A. Meehl, T. F. Stocker, W. D. Collins, et al., “Global Climate Projections,” in Climate Change 2007. The Physical Science Basis (Cambridge University Press, Cambridge, 2007), pp. 748–845.

    Google Scholar 

  45. 45.

    K. E. Trenbeth and J. M. Caron, “Estimates of Meridional Atmosphere and Ocean Heat Transports,” J. Climate 14(16), 3433–3443 (2001).

    Article  Google Scholar 

  46. 46.

    E. M. Volodin and N. A. Diansky, “Reproduction of the El-Niño Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model,” Meteorol. Gidrol., No. 12, 5–14 (2004).

  47. 47.

    D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Res. Lett. 25(9), 1297–1300 (1998).

    Article  Google Scholar 

  48. 48.

    J. M. Wallace and D. S. Gutzler, “Teleconnections in the Geopotential Height Field During the Northern Hemisphere,” Mon. Wea. Rev. 109 784–812 (2001).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. M. Volodin.

Additional information

Original Russian Text © E.M. Volodin, N.A. Dianskii, A.V. Gusev, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 4, pp. 448–466.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volodin, E.M., Dianskii, N.A. & Gusev, A.V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 46, 414–431 (2010).

Download citation

Key words

  • model
  • atmosphere
  • ocean
  • climate
  • El Niño
  • Arctic Oscillation
  • sea ice