Skip to main content
Log in

Fine structure of the turbulent atmospheric boundary layer over the water surface

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, the results of a laboratory experiment on investigating the wind-velocity field over a water surface using the PIV method are described. The use of a rapid CCD-camera made it possible to perform a detailed study of the eddy structure of airflow. We have measured the velocity fields over a flat plate by wind waves and waves induced by a wave generator. The model of a turbulent boundary layer over a rough surface was directly verified. It has been shown that the wind-velocity profiles over waves obtained by averaging the instantaneous fields over the ensemble of samples and horizontal coordinate are satisfactorily consistent with the profiles calculated within the frameworks of the model of wind flow over rough water surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Fairall, E. F. Bradley, J. E. Hare, et al., “Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm,” J. Clim. 16 (74), 571–591 (2003).

    Article  Google Scholar 

  2. H. Jeffreys, “On the Formation of Waves by Wind,” Proc. Roy. Soc. 107A, 189–206 (1924).

    Google Scholar 

  3. M. A. Al-Zanaidi and W. H. Hui, “Turbulent Airflow Over Water Waves—A Numerical Study,” J. Fluid Mech. 148, 225–246 (1984).

    Article  Google Scholar 

  4. P. A. E. M. Janssen, “Quasi-Linear Theory of Wind Wave Generation Applied to Wave Forecasting,” J. Phes. Oceanogr. 21, 1631–1642 (1991).

    Article  Google Scholar 

  5. A. D. Jenkins, “Quasi-Linear Eddy-Viscosity Model for the Flux of Energy and Momentum to Wind Waves using Conservation-Law Equations in a Curvilinear Coordinate System,” J. Phys. Oceanogr. 22(78), 843–858 (1992).

    Article  Google Scholar 

  6. V. P. Reutov and Yu. I. Troitskaya, “On Nonlinear Effects during Interaction of Waves on Water with Turbulent Wind,” Izv. Akad. Nauk, Fiz. Atm. Okeana 31(6), 825–834 (1995).

    Google Scholar 

  7. V. K. Makin, V. N. Kudryavtsev, and C. Mastenbroek, “Drag of the Sea Surface,” Boundary Layer Meteorol. 79, 159–182 (1995).

    Article  Google Scholar 

  8. D. V. Chalikov, “Numerical Simulation of the Boundary Layer above Water Waves,” Boundary Layer Meteorol. 34, 63–98 (1986).

    Article  Google Scholar 

  9. O. M. Phillips, “On the Generation of Waves by Turbulent Wind,” J. Fluid Mech. 2, 417–445 (1957).

    Article  Google Scholar 

  10. J. W. Miles, “On Generation of Surface Waves by Surface Waves by Shear Flows. Pt 2,” J. Fluid Mech. 6, 568–582 (1959).

    Article  Google Scholar 

  11. P. R. Gent, “A Numerical of the Air above Waves,” J. Fluid Mech. 82, 349–369 (1877).

    Article  Google Scholar 

  12. P. R. Gent and P. A. Taylor, “A Numerical Model of the Air Flow above Water Waves,” J. Fluid Mech. 77, 105–128 (1976).

    Article  Google Scholar 

  13. R. L. Snyder, F. W. Dobson, J. A. Elliott, and R. R. Long, “Array Measurements of Atmospheric Pressure Fluctuations above Surface Gravity Waves,” J. Fluid Mech. 102, 1–59 (1981).

    Article  Google Scholar 

  14. F. W. Dobson, “Measurements of Atmospheric Pressure on Wind-Generated Sea Waves,” J. Fluid Mech. 48, 91–127 (1971).

    Article  Google Scholar 

  15. F. W. Dobson, S. D. Smith, and R. J. Anderson, “Measuring the Relationship Between Wind Stress and Sea State in the Open Ocean in the of Swell,” Atmos.-Ocean 32, 237–256 (1994).

    Google Scholar 

  16. M. A. Donelan, A. V. Babanin, I. R. Young, et al., “Wave Follower Field Measurements of the Wind Input Spectral Function. Pt I: Measurements and Calibrations,” J. Atmos. Oceanic Technol. 22, 799–813 (2005).

    Article  Google Scholar 

  17. M. A. Donelan, A. V. Babanin, I. R. Young, et al., “Wave Follower Field Measurements of the Wind Input Spectral Function. Pt. II: Parameterization of the Wind Input,” J. Phys. Oceanogr. 36, 1672–1689 (2006).

    Article  Google Scholar 

  18. N. Reul, H. Branger, and J.-P. Giovanangeli, “Air Flow Separation over Unsteady Breaking Waves,” Phys. Fluids 11, 1959–1961 (1999).

    Article  Google Scholar 

  19. C. T. Hsu, E. Y. Hsu, and R. L. Street, “On the Structure of Turbulent Flow over a Progressive Water Wave: Theory and Experiment in a Transformed, Wave-Following Co-Ordinate System,” J. Fluid Mech. 105, 87–117 (1981).

    Article  Google Scholar 

  20. C. T. Hsu and E. Y. Hsu, “On the Structure of Turbulent Flow over a Progressive Water Wave: Theory and Experiment in a Transformed Wave-Following Coordinate System. Pt 2,” J. Fluid Mech. 131, 123–153 (1983).

    Article  Google Scholar 

  21. E. P. Anisimova, A. A. Speranskaya, K. V. Pokazeev, and N. I. Soboleva, “On Wind Profiles over Developing Wind Wave in the Water-Air Interface,” Vodn. Resur. 32(3), 295–300 (2005) [Water Resour. 32 (3), 265–269 (2005)].

    Google Scholar 

  22. R. J. Adrian, “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annu. Rev. Fluid Mech., No. 23, 261–304 (1991).

  23. D. A. Sergeev, “Measuring Complex for Studying Flows of Liquids by the Particle Image Velocimetry (PIV) Method Based on a Solid-State Laser with Diode Pumping,” Prib. Tekh. Eksp., No. 3, 32–38 (2009).

  24. O. N. Mel’nikova and K. V. Pokazeev, “Intensification of Nonlinear Wind Waves on Clean Water and in the Presence of an Oil Film,” Izv. Akad. Nauk, Fiz. Atm. Okeana 45(3), 420–425 (2009) [Izv., Atmos. Ocean. Phys. 45 (3), 392–397 (2009)].

    Google Scholar 

  25. B. T. Brooke, “Shearing Flow over a Wavy Boundary,” J. Fluid Mech. 6, 161–205 (1959).

    Article  Google Scholar 

  26. A. V. Smol’yakov, “Quadrupole Emission Spectrum of a Plain Turbulent Boundary Layer,” Akust. Zh. 19(3), 420–425 (1973).

    Google Scholar 

  27. S. A. Maslowe, “Critical Layers in Ahear Flows,” Ann. Rev. Fluid Mech. 18, 405–432 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Troitskaya.

Additional information

Original Russian Text © Yu.I. Troitskaya, D.A. Sergeev, O.S. Ermakova, G.N. Balandina, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 1, pp. 119–130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troitskaya, Y.I., Sergeev, D.A., Ermakova, O.S. et al. Fine structure of the turbulent atmospheric boundary layer over the water surface. Izv. Atmos. Ocean. Phys. 46, 109–120 (2010). https://doi.org/10.1134/S0001433810010147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810010147

Keywords

Navigation