Skip to main content
Log in

Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of simulating the influence of an atmospheric fine structure on the characteristics of acoustic signals propagating throughout the atmosphere for long distances from their sources are presented. A numerical model of an atmospheric fine inhomogeneous structure within the height range z = 20…120 km is proposed to perform calculations. This model and its numerical parameters are based on the current notions of the formation of an atmospheric fine structure due to internal gravity waves. The numerical calculations were performed using the parabolic-equation method. A spatial structure of the acoustic field and the structure of an acoustic signal at long distances from a pulsed source were calculated. It is shown that the presence of an atmospheric fine structure results in a scattering of acoustic signals and their recording in the geometric shadow region. The results of calculations of signal forms are in a satisfactory agreement with data on signals recorded in the geometric shadow region which is formed at a distance of about 300 km from an experimental explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Hocking and J. Rottger, “The Structure of Turbulence in the Middle and Lower Atmosphere Seen by and Deduced from MF, HF and VHF Radar, with Special Emphasis on Small-Scale Features and Anisotropy,” Annales Geophys. 19, 933–944 (2001).

    Article  Google Scholar 

  2. E. E. Gossard, J. H. Richter, and D. Atlas, “Internal Waves in the Atmosphere from High-Resolution Radar Measurements,” J. Geophys. Res. 75(18), 3523–3536 (1970).

    Article  Google Scholar 

  3. J. Rottger, “Reflection and Scattering of VHF Radar Signals from Atmospheric Refractivity Structures,” Radio Sci., No. 15, 259–276 (1980).

    Google Scholar 

  4. J. Rottger, Structure and Dynamics of the Stratosphere and Mesosphere Revealed by VHF Radar Investigations, Pure Appl. Geophys., 118, 494–527 (1980b).

    Article  Google Scholar 

  5. D. C. Fritts and M. J. Alexander, “Gravity Wave Dynamics and Effects in the Middle Atmosphere,” Rev. Geophys. 41(1/1003) (2003).

  6. J. H. Hecht, R. L. Walterscheld, D. C. Fritts, et al., “Wave Breaking Signatures in OH Airglow and Sodium Densities and Temperatures, Pt I: Airglow Imaging, Na Lidar, and MF Radar Observations,” J. Geophys. Res. 102, 665–668 (1993).

    Google Scholar 

  7. C. O. Hines, “Theory of the Eulerian Tail in the Spectra of Atmospheric and Oceanic Internal Gravity Waves,” J. Fluid Mech., No. 448, 289–313 (2001).

    Google Scholar 

  8. Y. Yamada, H. Fukunishi, and T. Nakamura, “Breakdown of Small-Scale Quasi-Stationary Gravity Wave and Transition to Turbulence Observed in OH Airglow,” Geophys. Rev. Lett. 28, 2153–2156 (2001).

    Article  Google Scholar 

  9. J. A. Whiteway and A. I. Carswell, “Lidar Observations of Thermal Structure and Gravity Wave Activity in the High Arctic during a Stratospheric Warming,” J. Atmos. Sci. 51(21), 3122–3136 (1994).

    Article  Google Scholar 

  10. A. S. Gurvich and I. P. Chunchuzov, “Parameters of the Fine Density Structure in the Stratosphere Obtained from Spacecraft Observations of Stellar Scintillations,” J. Geophys. Res. 108(D5), 4166 (2003).

    Article  Google Scholar 

  11. J. T. Bacmeister, S. D. Eckermann, P. A. Newman, et al., “Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft,” J. Geophys. Res. 101(D5), 9441–9470 (1996).

    Article  Google Scholar 

  12. N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, et al., Turbulence in the Free Atmosphere, 2nd ed. (Plenum, New York, 1980).

    Google Scholar 

  13. E. Hermawan, T. Tsuda, and T. Adachi, “MU Radar Observations of Tropopause Variations by using Clear Air Echo Characteristics,” Earth Planets Space 50, 361–370 (1998).

    Google Scholar 

  14. C. A. Hostetler and C. S. Gardner, “Observations of Horizontal and Vertical Wave Number Spectra of Gravity Wave Motions in the Stratosphere and Mesosphere Over the Mid-Pacific,” J. Geophys. Res. 99(D1), 1283–1302 (1994).

    Article  Google Scholar 

  15. C. A. Hostetler, C. S. Gardner, R. A. Vinsent, et al., “Spectra of Gravity Wave Density and Wind Perturbations Observed During ALOHA-90 on the 25 March Flight between Maui and Christmas Island,” Geophys. Res. Lett. 18(7), 1325–1328 (1991).

    Article  Google Scholar 

  16. I. P. Chunchuzov, “On the High-Wave Number Form of the Eulerian Internal Wave Spectrum in the Atmosphere,” J. Atmos. Sci. 59(14), 1753–1772 (2002).

    Article  Google Scholar 

  17. E. Lindborg, “The Energy Cascade in a Strongly Stratified Fluid,” J. Fluid Mech. 550, 207–242 (2006).

    Article  Google Scholar 

  18. E. Lindborg, “Can the Atmospheric Kinetic Energy Spectrum Be Explained by Two-Dimensional Turbulence?,” J. Fluid Mech. 388, 259–288 (1999).

    Article  Google Scholar 

  19. I. P. Chunchuzov, “On the Role of Nonlinearity in the Formation of the Spectrum of Atmospheric Gravity Waves,” Izv. Akad. Nauk, Fiz. Atm. Okeana 37(4), 466–469 (2001) [Izv., Atmos. Ocean. Phys. 37 (4), 466–469 (2001)].

    Google Scholar 

  20. G. A. Bush, S. N. Kulichkov, and A. I. Svertilov, “Some Results of the Experiments on Acoustic Wave Scattering from Anisotropic Inhomogeneities of the Middle Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 33(4), 483–491 (1997) [Izv., Atmos. Ocean. Phys. 33 (4), 445–452 (1997)].

    Google Scholar 

  21. S. N. Kulichkov and G. A. Bush, “Rapid Variations in Infrasonic Signals at Long Distances from One-Type Explosions,” Izv. Akad. Nauk, Fiz. Atm. Okeana 37(3), 331–338 (2001) [Izv., Atmos. Ocean. Phys. 37 (3), 306–313 (2001)].

    Google Scholar 

  22. S. N. Kulichkov, “Long-Range Propagation and Scattering of Low-Frequency Sound Pulses in the Middle Atmosphere,” Meteorol. Atmos. Phys. 85(1–3), 49–60 (2004).

    Google Scholar 

  23. S. Fujiwara, “On the Abnormal Propagation of Sound Waves in the Atmosphere, Second Part,” Bull. Centr. Meteorol. Observ. 2(1), 1–43 (1914).

    Google Scholar 

  24. S. N. Kulichkov, “Long-Range Sound Propagation in the Atmosphere (Review),” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 28(4), 3–20 (1992).

    Google Scholar 

  25. S. N. Kulichkov, I. P. Chunchuzov, G. A. Bush, and V. G. Perepelkin, “Physical Modeling of Long-Range Infrasonic Propagation in the Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 44(2), 186–198 (2008) [Izv., Atmos. Ocean. Phys. 44 (2), 175–186 (2008)].

    Google Scholar 

  26. V. G. Perepelkin, Candidate’s Dissertation in Mathematics and Physics (IFA RAN, Moscow, 2006).

  27. I. P. Chunchuzov, S. N. Kulichkov, A. I. Otrezov, et al., “Acoustic Study of Mesoscale Fluctuations in the Wind Velocity in the Stable Atmospheric Boundary Layer,” Izv. Akad. Nauk, Fiz. Atm. Okeana 41(6), 761–782 (2005) [Izv., Atmos. Ocean. Phys. 41 (6), 693–712 (2005)].

    Google Scholar 

  28. W. Meyer, C. R. Philbrick, J. Rottger, et al., “Mean Winds in the Winter Middle Atmosphere above Northern Scandinavia,” J. Atmos. Terr. Phys. 49(7), 675–687 (1987).

    Article  Google Scholar 

  29. V. A. Krasil’nikov, “Sound Propagation in Turbulent Atmosphere,” Dokl. Akad. Nauk SSSR 47(7), 486 (1945).

    Google Scholar 

  30. V. I. Tatarskii, Rasprostranenie voln v turbulentnoi atmosfere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  31. V. E. Ostashev, I. P. Chunchuzov, and D. K. Wilson, “Sound Propagation through and Scattering by Internal Gravity Waves in a Stably Stratified Atmosphere,” J. Acoust. Soc. Am. 118(6), 256–262 (2005).

    Article  Google Scholar 

  32. I. P. Chunchuzov, “Influence of Internal Gravity Waves on Sound Propagation in the Lower Atmosphere,” Meteorol. Atmos. Phys. 34(1–3), 1–16 (2003).

    Google Scholar 

  33. D. C. Fritts, B. P. Williams, C. Y. She, et al., “Observations of Extreme Temperature and Wind Gradients Near the Summer Mesopause during the MaCWAVE/MIDAS Rocket Campaign,” Geophys. Rev. Lett. 31, L24S06, doi: 10.1029/2003GL019389 (2004).

    Article  Google Scholar 

  34. S. N. Kulichkov, K. V. Avilov, G. A. Bush, et al., “On Anomalously Fast Infrasonic Arrivals at Long Distances from Surface Explosions,” Izv. Akad. Nauk, Fiz. Atm. Okeana 40(1), 3–12 (2004) [Izv., Atmos. Ocean. Phys. 40 (1), 1–9 (2004)].

    Google Scholar 

  35. S. N. Kulichkov, K. V. Avilov, O. E. Popov, et al., “Some Results of Simulation of Long-Range Infrasonic Propagation in the Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 40(2), 232–246 (2004) [Izv., Atmos. Ocean. Phys. 40 (2), 202–215 (2004)].

    Google Scholar 

  36. S. N. Kulichkov, “Conservation of “Acoustic Momentum” during Long-Range Infrasonic Propagation in the Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 38(5), 658–664 (2002) [Izv., Atmos. Ocean. Phys. 38 (5), 582–587 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kulichkov.

Additional information

Original Russian Text © S.N. Kulichkov, I.P. Chunchuzov, O.I. Popov, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 1, pp. 69–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulichkov, S.N., Chunchuzov, I.P. & Popov, O.I. Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv. Atmos. Ocean. Phys. 46, 60–68 (2010). https://doi.org/10.1134/S0001433810010093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810010093

Keywords

Navigation