Skip to main content
Log in

222Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Both space and time variations in the 222Rn concentration in the atmospheric surface layer over continental Russia were analyzed on the basis of data obtained in the Transcontinental Observations into the Chemistry of the Atmosphere (TROICA) experiments. The measurements were taken from a mobile laboratory which was part of a passenger train moving along the Trans-Siberian Railway from Moscow to Vladivostok. The factors that affect the spatial distribution of both daily and seasonal variations in the concentrations of 222Rn in the surface air were determined: atmospheric vertical stability, geological features of the area under study, and atmospheric precipitation. The influence of temperature inversions on the accumulation of 222Rn in the atmospheric surface layer was analyzed. The fluxes of 222Rn from the soil into the atmosphere were estimated for different regions of Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Wilkniss, R. E. Larson, D. J. Bressan, and J. Steranka, “Atmospheric Radon and Continental Dust Near the Antarctic and Their Correlation with Air Mass Trajectories Computed from Nimbus 5 Satellite Photographs,” J. Appl. Meteorol. 13, 512–515 (1974).

    Article  Google Scholar 

  2. R. Larson and D. Bressan, “Air Mass Characteristics over Coastal Areas as Determined by Radon Measurements,” in Proceedings of the Second Conf. on Coastal Meteorology, Los Angeles, CA, Amer. Meteor. Soc., (1980), pp. 94–100.

  3. J. M. Prospero, E. Bonatti, C. Schubert, and T. N. Carlson, “Dust in the Caribbean Atmosphere Traced to an African Dust Storm,” Earth Planet. Sci. Lett. 9, 287–293 (1970).

    Article  Google Scholar 

  4. A. Druilhet, D. Guedalia, J. Fontan, and J. Laurant, “Study of Radon-220 Emanation Deduced from Measurement of Vertical Profiles in the Atmosphere,” J. Geophys. Res. 77, 6508–6514 (1972).

    Article  Google Scholar 

  5. T. Kataoka, E. Yunoki, M. Shimizu, T. Mori, et al., “Diurnal Variation in Radon Concentration and Mixing-Layer Depths,” Bound.-Layer Meteorol. 89(2), 225–250 (1998).

    Article  Google Scholar 

  6. D. Guedalia, A. Ntsila, A. Druihlet, and J. Fontan, “Monitoring of the Atmospheric Stability above an Urban Suburban Site using Sodar and Radon Measurements,” J. Appl. Meteorol. 19, 839–848 (1980).

    Article  Google Scholar 

  7. M. Schmidt, R. Graul, H. Sartorius, and I. Levin, “Carbon Dioxide and Methane in Continental Europe: A Climatology, and 222 Radon-Based Emission Estimates,” Tellus 48, 457–473 (1996).

    Article  Google Scholar 

  8. C. Duenas, M. C. Fernandez, S. Cañete, Rep “222Rn Concentrations, Natural Flow Rate and the Radiation Exposure Level in the Nerja Cave,” Atmos. Environ. 33, 501–510 (1999).

    Article  Google Scholar 

  9. S. Biraud, P. Ciais, M. Ramonet, et al., “European Greenhouse Gas Emissions Estimated from Continuous Atmospheric Measurements and Radon-222 at Mace Head,” J. Geophys. Res. 105(D1), 1351–1366 (2000).

    Article  Google Scholar 

  10. J. Servant, “Temporal and Spatial Variations of the Concentration of the Short-Lived Decay Products of Radon in the Lower Atmosphere,” Tellus 18, 663–674 (1966).

    Google Scholar 

  11. G. V. Khokhlov and A. I. Durov, “Recurrence of Ground Inversions of Different Intensity on the Territory of Nizhnii Novgorod,” Ekol. Ezhemes., No. 2, 42–50 (2006).

  12. H. Beck and C. Gogolak, “Time-Dependent Calculations of the Vertical Distribution of 222Rn and Its Decay Products in the Atmosphere,” J. Geophys. Res. 84(C6), 3139–3148 (1979).

    Article  Google Scholar 

  13. V. A. Maksimovskii, A. A. Smyslov, and M. G. Kharlamov, Map of Radon Hazard of Russia (Scale, 1: 10000000): an Explanatory Note (Roskomnedra, VSEGEI, Goskomvuz, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  14. K. Megumi and T. Mamuro, “Radon and Thoron Exhalation from the Ground,” J. Geophys. Res. 78(11), 1804–1808 (1973).

    Article  Google Scholar 

  15. Y. Ishimori, K. Ito, and S. Furuta, “Environmental Effect of Radon from Uranium Waste Rock Piles,” Pt. I: “Measurements by Passive and Continuous Monitors,” in Proceedings of the 7th Tohwa University International Symposium on Radon and Thoron in the Human Environment, October 23–25, 1997, Ed. by A. Katase and M. Shimo (Japan, Fukouka, 1997), pp. 282–287.

  16. E. N. Kadygrov and D. R. Pick, “The Potential for Temperature Retrieval from an Angularscanning Single-Channel Microwave Radiometer and Some Comparison with in situ Observations,” Meteorol. Appl. 5, 393–404 (1998).

    Article  Google Scholar 

  17. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. 2000 Report to the General Assembly (New York, United Nations Sales Publ., 2000), Vol. 2.

  18. A. Kh. Khrgian, Atmospheric Physics (Gidrometeoizdat, Leningrad, 1978), Vol. 1 [in Russian].

    Google Scholar 

  19. H. Moses, Jr. H. F. Lucus, and G. A. Zerbe, “The Effect of Meteorological Variables upon Radon Concentration Three Feet above the Ground,” J. Air Pollut. Con. Assoc. 13, 12–19 (1963).

    Google Scholar 

  20. J. E. Pearson and H. Moses, “Atmospheric Radon-222 Concentration Variation with Height and Time,” J. Appl. Meteorol. 5, 175–181 (1966).

    Article  Google Scholar 

  21. H. Israël, M. Hobert, and G. W. Israël, “Results of Continuous Measurements of Radon and Its Decay Products in the Lower Atmosphere,” Tellus 18, 638–641 (1966).

    Google Scholar 

  22. V. A. Maksimovskii, V. V. Reshetov, and M. G. Kharlamov, Map of Radon Hazard in Russia (Scale, 1: 10000000), Ed. by A. A. Smyslov (Moscow, St. Petersburg, SPbGGI, 1995) [in Russian].

    Google Scholar 

  23. H. Dörr, B. Kromer, I. Levin, et al., “CO2 and Radon as Tracers for Atmospheric Transport,” J. Geophys. Res. 88(C2), 1309–1313 (1983).

    Article  Google Scholar 

  24. H. Dörr and K. Munnich, “Downward Movement of Soil Organic Matter and Its Influence on Trace-Element Transport (210Pb, 137Cs) in the Soil,” Radiocarbon 31(3), 655–663 (1989).

    Google Scholar 

  25. C. Dueñas, M. Perez, M. C. Fernandez, and J. Carretero, “Radon Concentrations in Surface Air and Vertical Atmospheric Stability of the Lower Atmosphere,” J. Environ. Radioactiv. 31(1), 87–102 (1996).

    Article  Google Scholar 

  26. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. 1982 Report to the General Assembly with Annexes (New York, United Nations Sales Publ., 1982).

  27. M. H. Wilkening, W. E. Clements, and D. Stanley, “Radon 222 Flux Measurements in Widely Separated Regions,” in The Natural Radiation Environment. USERDA Report CONF-720805-P2, Ed. by A.S. Adams, W.M. Lowder, and T. Gesell (1972), Vol. II, pp. 717–729.

  28. K. K. Turekian, Y. Nozaki, and L. K. Benninger, “The Flux of Radon and Thoron from Australian Geochemistry of Atmospheric Radon and Radon Products,” Ann. Rev. Earth Planet Sci. 5, 227–255 (1977).

    Article  Google Scholar 

  29. F. Conen and L. B. Robertson, “Latitudinal Distribution of Radon-222 Flux from Continents,” Tellus 54 B(2), 127–133 (2002).

    Google Scholar 

  30. V. B. Milin, S. G. Malakhov, K. I. Zorina, and T. I. Sisigina, Radon Concentration and Vertical Turbulent Mixing in the Lowest Atmospheric Layer (Foreign Technology Div. Wright-Patterson AFB, Ohio, 1968), p. 13.

    Google Scholar 

  31. L. V. Kirichenko, “Radon Exhalation from Vast Areas According to Vertical Distribution of Its Short-Lived Decay Products,” J. Geophys. Res. 75(18), 3639–3649 (1970).

    Article  Google Scholar 

  32. T. V. Rammachandran and M. C. Balani, Report on the Participation by the BARC in the Tenth Indian Expedition to Antarctica, March 1993 (BARC, Bombay, 1993).

    Google Scholar 

  33. K. Gehrcke, M. Kummel, and K. Dushe, “Background Radon Levels in Germany and how to Take Them into Account in Radiological Evaluations,” in proceedings of the International Conference on Radioecology and Environmental Radioaktivity, June, 15–20, 2008 (Bergen, Norway, 2008), pp. 92–95.

  34. Kim Chang-Kyu, Lee Seung-Chan, Lee Dong-Myung, et al. “Nationwide Survey of Radon in Korea,” Health Physics, 84(3), 354–360 (2003).

    Article  Google Scholar 

  35. S. Oikawa, N. Kanno, T. Sanada, et al., “A Nationwide Survey of Outdoor Radon Concentration in Japan,” J. Environ. Radioact. 65(2), 203–213 (2003).

    Article  Google Scholar 

  36. S.D. Schery, S. Whittlestone, K.P. Hart, S.E. Hill, “The Flux of Radon and Thoron from Australian Soils,” J. Geophys. Res. 94(D6), 8567–8576 (1989).

    Article  Google Scholar 

  37. P. R. Zupancic, “Messungen der Exhalation von Radium-Emanation aus dem Erdboden,” Terr. Magn. Atmos. Electr. 39, 33–46 (1934).

    Article  Google Scholar 

  38. P. R. Zeilinger, “Uber die Nachlieferung von Radiumemanation aus dem Erdboden,” Terr. Magn. Atmos. Electr. 40, 281–294 (1935).

    Article  Google Scholar 

  39. W. Kosmath, “Die Exhalation der Radonemenation aus dem Erdboden und Ihre Abhngigkeit von Meteorologischen Fakten,” Gerlands Beitr. Geophys. 40, 226–237 (1935).

    Google Scholar 

  40. J. Servant, Radon and Its Short Lived Daughters in the Atmosphere. Ph.D. Thesis (University of Paris, Paris, 1964).

    Google Scholar 

  41. H. Israël and M. Hobert, C. de la Riva, “The Eddy Transfer of Active and Passive Contaminants in the Atmospheric Boundary Layer,” Rep. U.S., Army Contr, DAJA 37-69-C-1348 (1970).

  42. L. B. Smyth, “On the Supply of Radium Emanation from the Soil to the Atmosphere,” Pholos. Mag. 24, 632–637 (1912).

    Google Scholar 

  43. K. Megumi and T. Mamuro, “A Method for Measuring Radon and Thoron Exhalation from the Ground,” J. Geophys. Res. 77(17), 3052 (1972).

    Article  Google Scholar 

  44. K. Tojo, Survey of 222Rn Exhalation Rate from Ground and Its Relationship with Atmospheric 222Rn Concentration. Master Thesis, Department of Nuclear Engineering (Nagoya University, Nagoya, 1989).

    Google Scholar 

  45. R. Rosen, “Note on Some Observations of Radon and Thoron Exhalation from the Ground,” N.Z. J. Sci. Technol. 38, 644–654 (1957).

    Google Scholar 

  46. J. R. Wright and O. F. Smith, “The Variation with Meteorological Conditions of the Amount of Radium Emanation in the Atmosphere, in the Soil Gas, and in the Air Exhaled from the Surface of the Ground at Manila,” Phys. Rev. 2(5), 459 (1915).

    Article  Google Scholar 

  47. M. V. Wilkening and J. E. Hand, “Radon Flux at the Earth-Air Interface,” J. Geophys. Res. 65(10) (1960).

  48. H. W. Kraner, G. L. Schrolder, and R. D. Evans, “Measurement of the Effects of Atmospheric Variables on Radon-222 Flux and Soil Gas Concentration,” in The Natural Radiation Environment (The University of Chicago Press, Chicago, 1964).

    Google Scholar 

  49. J. E. Pearson and E. J. Jones, “Soil Concentration of Emanating Radium-226 and the Emanation of Radon-222 from Soils and Plants,” Tellus 18(2), 655–662 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Berezina.

Additional information

Original Russian Text © E.V. Berezina, N.F. Elansky, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 6, pp. 809–822.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezina, E.V., Elansky, N.F. 222Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments. Izv. Atmos. Ocean. Phys. 45, 757–769 (2009). https://doi.org/10.1134/S0001433809060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809060097

Keywords

Navigation