Skip to main content
Log in

Mathematical modeling of the atmosphere-cryolitic zone interaction

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The main factors controlling the ground thermal regime characteristic of cold regions are analyzed with the use of a one-dimensional model of heat and moisture transport in the soil and its interaction with the atmosphere. The influence of these factors on the state of permafrost and the present-day climate as a whole is investigated on the basis of numerical experiments with a global model of general atmospheric circulation. It is shown that a decrease in the heat conductivity coefficient of the upper soil level, which can be interpreted as a layer of nondecomposed litter and moss, considerably increases the area occupied by permafrost. The introduction of the dependence of the heat conductivity coefficient on the phase state of water in the ground also increases the area occupied by permafrost and decreases the depth of the layer of its seasonal thawing in this territory. It is also established that the larger the relative amount of water which can be contained in the ground in a supercooled state is, the higher its temperature is, the lager the active layer depth is, and the smaller the area occupied by perennially frozen rocks is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Anisimov and F. E. Nelson, “Permafrost Distribution in the Northern Hemisphere under Scenarios of Climatic Change,” Global Planet. Change 14, 59–72 (1996).

    Article  Google Scholar 

  2. A. V. Pavlov, “Prediction of Evolution of the Cryolithozone in the North of Western Siberia (According to Monitoring Data),” in Results of Basic Research of Earth’s Cryosphere in Arctic and Subarctic (Nauka, Novosibirsk, 1997), pp. 94–101 [in Russian].

    Google Scholar 

  3. R. A. Houghton, “Terrestrial Sources and Sinks of Carbon Inferred from Terrestrial Data,” Tellus 48B, 420–432 (1996).

    Google Scholar 

  4. L. D. Hinzman, N. D. Bettez, W. R. Bolton, et al., “Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions,” Climate Change 72, 251–298 (2005).

    Article  Google Scholar 

  5. M. C. Serreze, J. E. Walsh, F. S. Chapin, et al., “Observational Evidence of Recent Change in the Northern High-Latitude Environment,” Climate Change 46, 159–207 (2000).

    Article  Google Scholar 

  6. P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, and I. I. Mokhov, “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(1), 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42 (1), 32–39 (2006)].

    Google Scholar 

  7. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, et al., (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  8. J. Brawn, “Development of International Programs on Studying Permafrost in the Past Years, Report to the Third Conference of Geocryologists of Russia, June 1–3, 2005,” Kriosfera Zemli 10(1), 11–13 (2006).

    Google Scholar 

  9. S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the Global Carbon Budget,” Science 312, 1612–1613 (2006).

    Article  Google Scholar 

  10. S. E. Grechishchev, “Prediction of Permafrost Thawing and Distribution and Changes in the Cryogenic Cracking of Soils on the Territory of Russia during Climate Warming,” Kriosfera Zemli 1(1) (1997).

  11. L. N. Khrustalev, “Problems of Engineering Geocryology at the Turn of the XXI Century,” Kriosfera Zemli 4(1), 3–10 (2000).

    Google Scholar 

  12. V. P. Nechaev, “On Some Ratios between Permafrost and Climatic Parameters and Their Paleogeographic Significance,” in Paleogeographic Problems of Pleistocene of Glacial and Periglacial Areas, Ed. by A. A. Velichko and V. P. Grichuk, (Moscow, Nauka, 1981), pp. 211–220 [in Russian].

    Google Scholar 

  13. P. F. Demchenko, A. A. Velichko, A. V. Eliseev, et al., “Dependence of Permafrost Conditions on Global Warming: Comparison of Models, Scenarios, and Paleoclimatic Reconstructions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(2), 165–174 (2002) [Izv., Atmos. Ocean. Phys. 38 (2), 143–151 (2002)].

    Google Scholar 

  14. V. A. Kudryavtsev, L. S. Garagulya, K. A. Kondrat’eva, et al., Principles of Permafrost Predictions (Mosk. Gos. Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  15. V. E. Romanovsky and T. E. Osterkamp, “Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic,” Permafrost Periglacial Proc. 8, 1–22 (1997).

    Article  Google Scholar 

  16. E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(4), 453–465 (1998) [Izv., Atmos. Ocean. Phys. 34 (4), 405–416 (1998)].

    Google Scholar 

  17. L. S. Kuchment, A. N. Gel’fan, and V. N. Demidov, “A Model of Runoff Formation on Watersheds in the Permafrost Zone: Case Study of the Upper Kolyma River,” Vodn. Resur. 27(4), 392–400 (2000) [Water Resour. 27 (4), 392–400 (2000)].

    Google Scholar 

  18. W. L. Quinton and D. M. Gray, “Subsurface Drainage from Organic Soils in Permafrost Terrain: the Major Factors to be Represented in a Runoff Model,” in Proceedings of the Eighth International Conference on Permafrost, Davos, 2003 (2003), p. 6.

  19. V. N. Lykosov and E. G. Palagin, “Heat and Moisture Transfer in Freezing Soil and Agrometeorological Forecast,” Zeitsshrift Fur Meteorologie 28 34–41 (1978).

    Google Scholar 

  20. J. Beringer, A. H. Lynch, F. S. Chapin, et al., “The Representation of Arctic Soils in the Land Surface Model: the Importance of Mosses,” J. Clim. 14, 3324–3335 (2001).

    Article  Google Scholar 

  21. E. E. Machul’skaya, Candidate’s Dissertation in Mathematics and Physics (Moscow, 2001).

  22. O. A. Anisimov and F. E. Nel’son, “Effect of Climatic Changes on the Permafrost in the Northern Hemisphere,” Meteorol. Gidrol., No. 5, 71–80 (1997).

  23. Q. Zhuang, V. E. Romanovsky, and A. D. McGuire, “Incorporation of a Permafrost Model into a Large-Scale Ecosystem Model: Evaluation of Temporal and Spatial Scaling Issues in Simulating Soil Thermal Dynamics,” J. Geophys. Res. 106, 33649–33670 (2001).

    Article  Google Scholar 

  24. M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, and I. I. Mokhov, “Modeling of Changes in Temperature and Hydrological Regimes of Subsurface Permafrost, using the Climate Data (Reanalysis),” Kriosfera Zemli 11(4), 65–69 (2007).

    Google Scholar 

  25. S. P. Malevskii-Malevich, E. K. Mol’kentin, E. D. Nadezhina, et al., “Simulations and Analysis of Possibilities of Experimental Verification of the Evolution of Thermal State of Permafrost Soils,” Kriosfera Zemli 11(1), 29–36 (2007).

    Google Scholar 

  26. P. V. Pavlova, V. M. Kattsov, E. D. Nadezhina, et al., “Computation of Cryosphere Evolution in XX and XXI Centuries using New-Generation Global Climate Models,” Kriosfera Zemli 11(2), 3–13 (2007).

    Google Scholar 

  27. Ya. K. Yamaguchi, A. Noda, and A. Kitoh, “The Changes in Permafrost Induced by Greenhouse Warming: a Numerical Study Applying Multiple-Layer Ground Model,” J. Meteorol. Soc. Japan 83(5), 799–815 (2005).

    Article  Google Scholar 

  28. D. M. Lawrence and A. G. Slater, “Incorporating Organic Soil into a Global Climate Model,” Clim. Dyn. 30(2–3), 145–160 (2007).

    Google Scholar 

  29. E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer Processes in the Snow Cover for Seasonal Variations of the Land Hydrological Cycle,” Meteorol. Gidrol., No. 5, 5–14 (2000).

  30. E. E. Machul’skaya and V. N. Lykosov, “Simulation of the Thermodynamic Response of Permafrost to Seasonal and Interannual Variations in Atmospheric Parameters,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(1), 20–33 (2002) [Izv., Atmos. Ocean. Phys. 38 (1), 15–27 (2002)].

    Google Scholar 

  31. C. A. Schlosser, A. G. Slater, A. Robock, et al., “Simulations of the Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase (2d),” Mon. Wea. Rev. 128, 301–321 (2000).

    Article  Google Scholar 

  32. M. C. McCumber and R. A. Pielke, “Simulation of the Effects of the Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model. Pt. 1: Soil Layer,” J. Geophys. Res. 86, 9929–9938 (1981).

    Article  Google Scholar 

  33. R. B. Clapp and M. G. Hornberger, “Empirical Equations for Some Soil Hydraulic Properties,” Water Resour. Res. 14, 601–604 (1978).

    Article  Google Scholar 

  34. A. V. Pavlov, Thermal Physics of Landscapes (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  35. O. T. Farouki, “Thermal Properties of Soils,” CRREL Monograph 81(1).

  36. G. B. Bonan and H. H. Shugart, “Environmental-Factors and Ecological Processes in Boreal Forests,” Annu. Rev. Ecol. Syst., 20 1-28(1989).

    Google Scholar 

  37. J. R. Mackay, “Active Layer Changes (1968–1993) Following the Forest-Tundra Fire near Inuvik, N.W.T., Canada,” Arct. Alp. Res., 27 323-336(1995).

  38. A. V. Pavlov, “The Use of Heat Balance Method for Solving Problems of Constructive Geography in Northern Regions,” Izv. Akad. Nauk SSSR, Ser. Geogr., No. 4 (1981).

  39. L. Hinzman, D. L. Kane, R. E. Gieck, et al., “Hydrologic and Thermal Properties in the Active Layer in the Alaskan Arctic,” Cold Reg. Sci. Technol. 19, 95–110.

  40. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al., Simulation of Modern Climate using the Atmospheric Model of Institute of Calculus mathematics, Russian Academy of Sciences: Description of Model A5421 (Version 1997) and the Results of Experiments on the AMIP-II Program, Deposited in VINITI July 3, 1998, no. 2086-B98.

  41. V. A. Alexeev, D. J. Nicolsky, V. E. Romanovsky, and D. M. Lawrence, “An Evaluation of Deep Soil Configurations in the CLM3 for Improved Representation of Permafrost,” Geophys. Rev. Lett. 34(9), L09502 (2007).

    Article  Google Scholar 

  42. A. N. Khimenkov and A. N. Vlasov, “Effect of Environmental Nonuniformity the Cryolithozone Dynamics,” Kriosfera Zemli 11(1), 21–28 (2007).

    Google Scholar 

  43. V. E. Romanovsky and T. E. Osterkamp, “Effects of Unfrozen Water on Heat and Mass Transport Processes in the Active Layer and Permafrost,” Permafrost Periglacial Proc. 11, 219–239 (2000).

    Article  Google Scholar 

  44. J. Brown, O. J. Ferrians, Jr., J. A. Heginbottom, et al., “Circum-Arctic Map of Permafrost and Ground-Ice Conditions,” in National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media (Boulder. CO, 1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Machul’skaya.

Additional information

Original Russian Text © E.E. Machul’skaya, V.N. Lykosov, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 6, pp. 736–753.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machul’skaya, E.E., Lykosov, V.N. Mathematical modeling of the atmosphere-cryolitic zone interaction. Izv. Atmos. Ocean. Phys. 45, 687–703 (2009). https://doi.org/10.1134/S0001433809060024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809060024

Keywords

Navigation