Skip to main content
Log in

Generating electric-discharge layers in mesoscale convective systems

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A system of quasi-hydrodynamic equations for the electric field, charges, and concentrations of cloud particles and light aeroions in stratified regions of mesoscale convective systems is proposed and analyzed numerically in a one-dimensional approximation. The important role of Debye-charge layers, which are caused by light ions, is established. It is shown that, under certain aerodynamic conditions, both noninductive and inductive melting-related charging of particles may cause a narrow intense positive-charge layer to form near the zero-temperature isotherm; the altitude at which the vertical velocity component changes sign with respect to the height of the zero-temperature isotherm is of particular importance. When consideration is taken for an inductive charging mechanism and the real structure of the rising flow’s velocity, the distributions of charges and field strength (with a peak of about 100 kV/m), which describe the profiles observed in experiments, form in about 30 min. Taking into account the polarization of melting aggregates and water drops in an electric field when aeroions attach to them causes the rate of generating electric-charge layers to reduce. Thus, the solutions obtained in this study describe the structure and dynamics of spatially separated regions of electric charges in the stratified region and offer a satisfactory explanation for the experimental data. The results are important for explaining the abnormally high lightning activity of mesoscale convective systems, their role in initiating charges in the middle atmosphere, and maintaining the quasi-stationary state of the global electric circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  2. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  3. A. G. Laing and J. M. Fritsch, “The Large-Scale Environment of the Global Population of Mesoscale Convective Complexes,” Mon. Weather Rev. 128, 2756–2776 (2000).

    Article  Google Scholar 

  4. R. A. Houze, Cloud Dynamics (Academic, San Diego, 1993).

    Google Scholar 

  5. R. A. Maddox, “Mesoscale Convective Complexes,” Bull. Am. Meteorol. Soc. 61, 1374–1386 (1980).

    Article  Google Scholar 

  6. T. C. Marshall, M. Stolzenburg, W. D. Rust, et al., “Positive Charge in the Stratiform Cloud of a Mesoscale Convective System,” J. Geophys. Res. D 106, 1157–1164 (2001).

    Article  Google Scholar 

  7. T. J. Lang, S. A. Rutledge, and K. C. Wiens, “Origins of Positive Cloud-to-Cloud Lightning Flashes in the Stratiform Region of a Mesoscale Convective System,” Geophys. Rev. Lett. 31, doi: 10.1029/2004GL019823, L10105 (2004).

  8. Sprites, Elves and Intense Lightning Discharges, Ed. by M. Fullekrug, E. Mareev, and M. Rycroft (Springer, Heidelberg, 2006), NATO Science Series, Vol. 225.

    Google Scholar 

  9. S. S. Davydenko, E. A. Mareev, T. C. Marshall, and M. Stolzenburg, “On the Calculation of Electric Fields and Currents of Mesoscale Convective Systems,” J. Geophys. Res. 109, doi: 10.1029/2003JD003832, D11103 (2004).

  10. T. C. Marshall and W. D. Rust, “Two Types of Vertical Electrical Structures in Stratiform Precipitation Regions of Mesoscale Convective Regions,” Bull. Am. Meteorol. Soc. 74, 2159–2170 (1993).

    Article  Google Scholar 

  11. M. Stolzenburg, W. D. Rust, B. F. Smull, and T. C. Marshall, “Electrical Structure in Thunderstorm Convective Regions, 1, Mesoscale Convective Systems,” J. Geophys. Res. D 103, 14 059–14 078 (1998).

    Google Scholar 

  12. M. Stolzenburg, W. D. Rust, and T. C. Marshall, “Serial Soundings of Electric Field through a Mesoscale Convective System,” J. Geophys. Res. D 106, 12371–12380 (2001).

    Article  Google Scholar 

  13. Q. Mo, A. G. Detwiler, J. Hallet, and R. Black, “Horizontal Structure of the Electric Field in the Stratiform Region of an Oklahoma Mesoscale Convective System,” J. Geophys. Res. 108, doi: 10.1029/2001JD001140, D4225 (2003).

    Article  Google Scholar 

  14. M. G. Bateman, T. C. Marshall, M. Stolzenburg, and W. D. Rust, “Precipitation Charge and Size Measurements inside a New Mexico Mountain Thunderstorm,” J. Geophys. Res. D 104, 9643–9653 (1999).

    Article  Google Scholar 

  15. M. Stolzenburg, T. C. Marshall, W. D. Rust, and B. F. Smull, “Horizontal Distribution of Electrical and Meteorological Conditions across the Stratiform Region of a Mesoscale Convective System,” Mon. Weather. Rev. 122, 1777–1797 (1994).

    Article  Google Scholar 

  16. R. T. Shepherd, W. D. Rust, and T. C. Marshall, “Electric Fields and Charges near 0°C in Stratiform Clouds,” Mon. Weather. Rev. 124, 919–938 (1996).

    Article  Google Scholar 

  17. G. B. Brylev, S. B. Gashina, B. F. Evteev, and I. I. Kamaldina, Characteristics of Electrically Active Zones in Stratiform Clouds (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  18. A. V. Kochin, “Mechanism of Electric-Charge Formation in Stratiform and Cumulonimbus Clouds,” Meteorol. Gidrol., No. 10, 42–49 (1995).

  19. E. A. Mareev, A. A. Evtushenko, and S. A. Yashunin, “On the Modeling of Sprites and Sprite-Producing Clouds in the Global Electric Circuit,” in Sprites, Elves and Intense Lightning Discharges, Ed. by M. Fullekrug, E. Mareev, and M. Rycroft (Springer, Heidelberg, 2006), NATO Science Series, Vol. 225, pp. 313–340.

    Chapter  Google Scholar 

  20. T. J. Schuur and S. A. Rutledge, “Electrification of Stratiform Regions in Mesoscale Convective Systems. Part II: Two-Dimensional Numerical Model Simulations of a Symmetric MCS,” J. Atmos. Sci. 57, 1983–2006 (2000).

    Article  Google Scholar 

  21. I. M. Imyanitov, E. V. Chubarina, and Ya. M. Shvarts, Electricity of Clouds (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  22. V. M. Muchnik, Physics of Thunderstorm (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  23. E. R. Williams, “The Tripole Structure of Thunderstorm,” J. Geophys. Res. D 94, 13 151–13 167 (1989).

    Google Scholar 

  24. C. P. R. Saunders, “A Review of Thunderstorm Electrification Processes,” J. Appl. Meteorol. 32, 642–655(1993).

    Article  Google Scholar 

  25. T. Takahashi, “Riming Electrification as a Charge Generation Mechanism in Thunderstorms,” J. Atmos. Sci. 35, 1536–1548 (1978).

    Article  Google Scholar 

  26. T. Takahashi, “Thunderstorm Electrification — a Numerical Study,” J. Atmos. Sci 41, 2541–2558 (1984).

    Article  Google Scholar 

  27. C. P. R. Saunders and S. L. Peck, “Laboratory Studies of the Influence of the Rime Accretion Rate on Charge Transfer during Crystal/Graupel Collisions,” J. Geophys. Res. D 103, 13 949–13 956 (1998).

    Article  Google Scholar 

  28. R. G. Pereyra, E. E. Avila, N. E. Castellano, and C. P. R. Saunders, “A Laboratory Study of Graupel Charging,” J. Geophys. Res. D 105, 20 803–20 812(2000).

    Article  Google Scholar 

  29. T. Takahashi, “Electric Potential of Liquid Water on an Ice Surface,” J. Atmos. Sci. 26, 1253–1258 (1969).

    Article  Google Scholar 

  30. J. C. Drake, “Electrification Accompanying the Melting of Ice Particles,” Q. J. R. Meteorol. Soc. 94(400), 176–191 (1968).

    Article  Google Scholar 

  31. C. A. Knight, “Observations of the Morphology of Melting Snow,” J. Atmos. Sci 36, 1123–1130 (1979).

    Google Scholar 

  32. P. T. Willis and A. J. Heymsfield, “Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation,” J. Atmos. Sci 46, 2007–2024 (1989).

    Article  Google Scholar 

  33. E. R. Williams and Y. Yair, “The Microphysical and Electrical Properties of Sprite-Producing Thunderstorms,” in Sprites, Elves and Intense Lightning Discharges, Ed. by M. Fullekrug, E. Mareev, and M. Rycroft (Springer, Heidelberg, 2006), NATO Science Series, Vol. 225, pp. 57–82.

    Chapter  Google Scholar 

  34. C. S. Chiu, “Numerical Study of Cloud Electrification in an Axisymmetric, Time-Dependent Cloud Model,” J. Geophys. Res. 83, 5025–5047 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evtushenko.

Additional information

Original Russian Text © A.A. Evtushenko, E.A. Mareev, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 2, pp. 255–265.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evtushenko, A.A., Mareev, E.A. Generating electric-discharge layers in mesoscale convective systems. Izv. Atmos. Ocean. Phys. 45, 242–252 (2009). https://doi.org/10.1134/S0001433809020091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809020091

Keywords

Navigation