Skip to main content
Log in

Estimating the efficiency of mitigating and preventing global warming with scenarios of controlled aerosol emissions into the stratosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Ensemble numerical experiments with the climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) are conducted to estimate the efficiency of controlled climate forcing (geoengineering) due to stratospheric sulfate aerosol (SSA) emissions in order to compensate for global warming under the SRES A1B anthropogenic emission scenario. Full (or even excessive) compensation for the expected anthropogenic warming in the model is possible with sufficiently intense geoengineering. For ensemble members with values of the governing parameters corresponding to those obtained for the Mt. Pinatubo eruption, global warming is reduced by no more than 0.46 K in the second half of the 21st century, with a residual rise in the global surface temperature T g comparative to 1961–1990 of 1.0–1.2 K by 2050 and 1.9–2.2 K by 2100. The largest reduction in global warming (with the other parameters of the numerical experiment being equal) is found not for a meridional distribution of SSA concentration peaked at low latitudes (despite the largest (in magnitude) global compensation instantaneous radiative forcing), but for a uniform horizontal aerosol distribution and for a distribution with the SSA concentration maximum in the middle and subpolar latitudes of the Northern Hemisphere. The efficiency of geoengineering in terms of T g in the second half of the 21st century between the most efficient and the least efficient meridional distributions of stratospheric aerosols differs by as much as one-third, depending on the values of other governing parameters. For meridional distributions of SSA concentration, which produce the largest deceleration of global warming, such a deceleration is regionally most pronounced over high- and subpolarlatitude land areas and in the Arctic. In particular, this is expressed in the smallest reduction in the sea-ice extent and permafrost area under climate warming in the model. The compensation forcing also decelerates a general increase in global annual precipitation P g during warming. The relative deceleration in precipitation increase is most pronounced in land regions outside the tropics, where a significant deficit in precipitation is currently observed. After the theoretical completion of geoengineering in the first or second decade, its temperature effect vanishes with an abrupt acceleration of global and regional surface warming. For individual members of the ensemble experiment, the global temperature change in this period is five times as large as that in the experiment without geoengineering and ten times as large regionally (in northeastern Siberia).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  2. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Estimation with the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 243–247 (2005).

    Google Scholar 

  3. Climate Change 27: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  4. M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  5. S. H. Schneider, “Geoengineering: Could—or Should—We Do It?,” Clim. Change 33, 291–302 (1996).

    Article  Google Scholar 

  6. S. H. Schneider, “Earth Systems Engineering and Management,” Nature 409(6868), 417–421 (2001).

    Article  Google Scholar 

  7. Yu. A. Izrael’, “Effective Way of Retaining Climate at the Present-Day Level Is the Main Goal of Solving the Climate Problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).

  8. P. J. Crutzen, “Albedo Enhancement by Stratospheric Sulfur Injections: a Contribution to Resolve a Policy Dilemma?,” Clim. Change 77, 211–219 (2006).

    Article  Google Scholar 

  9. T. M. L. Wigley, “A Combined Mitigation/Geoengineering Approach to Climate Stabilization,” Science 314(5798), 452–454 (2006).

    Article  Google Scholar 

  10. V. Brovkin, V. Petoukhov, M. Claussen, et al., “Geoengineering Climate by Stratospheric Sulfur Injections: Earth System Vulnerability to Technological Failure,” Clim. Change (in press).

  11. P. J. Rasch, P. J. Crutzen, and D. B. Coleman, “Exploring the Geoengineering of Climate Using Stratospheric Sulfate Aerosols: the Role of Particle Size,” Geophys. Rev. Lett. 35, L02809 (2008).

    Google Scholar 

  12. K. E. Trenberth and A. Dai, “Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle as an Analog of Geoengineering,” Geophys. Rev. Lett. 34, L15702 (2007).

    Google Scholar 

  13. A. Robock, L. Oman, and G. L. Stenchikov, “Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections,” J. Geophys. Res. 113, D16101 (2008).

    Google Scholar 

  14. H. D. Matthews and K. Caldeira, “Transient Climate-Carbon Simulations of Planetary Geoengineering,” Proc. Natl. Acad. Sci. U.S.A. 104, 9949–9954 (2007).

    Article  Google Scholar 

  15. S. Tilmes, R. Muller, and R. Salawitch, “The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes,” Science 320(5880), 1201–1204 (2008).

    Article  Google Scholar 

  16. V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).

    Google Scholar 

  17. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Sensitivity of the IAP RAS Global Climate Model with an Interactive Carbon Cycle to Anthropogenic Forcings,” Dokl. Akad. Nauk 407, 400–404 (2006).

    Google Scholar 

  18. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Climate and Carbon Cycle Variations in the 20th and 21st Centuries in a Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 3–17 (2007) [Izv., Atmos. Ocean. Phys. 43, 1–14 (2007)].

    Google Scholar 

  19. A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., “Interaction of the Methane Cycle and Processes in Wetland Ecosystems in a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 147–162 (2008) [Izv., Atmos. Ocean. Phys. 44, 139–152 (2008)].

    Google Scholar 

  20. A. V. Eliseev and I. I. Mokhov, “Influence of Volcanic Activity on Climate Change in the Past Several Centuries: Assessments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 723–746 (2008) [Izv., Atmos. Ocean. Phys. 44, 671–683 (2008)].

    Google Scholar 

  21. I. I. Mokhov and A. V. Eliseev, “Geoengineering Efficiency: Preliminary Assessment with a Climate Model of Intermediate Complexity,” in Research Activities in Atmospheric and Oceanic Modelling., Ed. by J. Nöte (World Climate Research Programme, Geneva, 2008), pp. 07-21–07-22.

    Google Scholar 

  22. G. J. S. Bluth, S. D. Doiron, C. C. Schnetzler, et al., “Global Tracking of the SO2 Clouds from the June, 1991 Mount Pinatubo Eruptions,” Geophys. Rev. Lett. 19, 151–154 (1992).

    Article  Google Scholar 

  23. J. Hansen, M. Sato, L. Nazarenko, et al., “Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations,” J. Geophys. Res. 107, 4347 (2002).

    Article  Google Scholar 

  24. K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Processes of Formation and Aftereffect of Atmospheric-Aerosol Actions: 7. Aerosol Radiative Disturbing Action and Climate,” Opt. Atmos. Okeana 18, 535–536 (2005) [Atmos. Ocean. Optics, 18, 177–188].

    Google Scholar 

  25. G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” in Trends: a Compendium of Data on Global Change (Oak Ridge Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. of Energy, 2005).

  26. R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus B 55, 378–390 (2003).

    Article  Google Scholar 

  27. D. I. Stern and R. K. Kaufmann, “Estimates of Global Anthropogenic Methane Emissions 1860–1993,” Chemosphere 33, 159–176 (1996).

    Article  Google Scholar 

  28. M. C. MacFarling, D. Etheridge, C. Trudinger, et al. “Law Dome CO2, CH4 and N2O Ice Core Records Extended to 2000 Years BP,” Geophys. Res. Lett. 33, L14810 (2006).

    Google Scholar 

  29. L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. 111, D22211 (2006).

    Google Scholar 

  30. A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  31. J. Hansen, A. Lacis, R. Ruedy, and M. Sato, “Potential Climate Impact of Mount Pinatubo Eruption,” Geophys. Rev. Lett. 19, 215–218 (1992).

    Article  Google Scholar 

  32. J. E. Hansen and L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).

    Article  Google Scholar 

  33. O. Boucher, S. E. Schwartz, T. P. Ackerman, et al., “Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols,” J. Geophys. Res. D 103, 16 979–16 998 (1998).

    Article  Google Scholar 

  34. G. L. Stenchikov, I. Kirchner, A. Robock, et al., “Radiative Forcing from the 1991 Mount Pinatubo Volcanic Eruption,” J. Geophys. Res. D 103, 13 837–13 857 (1998).

    Article  Google Scholar 

  35. M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18, 579–586 (2002).

    Article  Google Scholar 

  36. V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn. 25, 363–385 (2005).

    Article  Google Scholar 

  37. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 591–601 (2007) [Izv., Atmos. Ocean. Phys. 43, 544–554 (2007)].

    Google Scholar 

  38. J. Hansen, M. Sato, and R. Ruedy, “Radiative Forcing and Climate Response,” J. Geophys. Res. D 102, 6831–6864 (1997).

    Article  Google Scholar 

  39. G. J. Boer and B. Yu, “Climate Sensitivity and Response,” Clim. Dyn. 20, 415–429 (2003).

    Google Scholar 

  40. G. J. Boer and B. Yu, “Climate Sensitivity and Climate State,” Clim. Dyn. 21, 167–176 (2003).

    Article  Google Scholar 

  41. J. Hansen, M. Sato, R. Ruedy, et al., “Efficacy of Climate Forcings,” J. Geophys. Res. 110, D18104 (2005).

    Google Scholar 

  42. J. R. Holton, P. H. Haynes, M. E. McIntyre, et al., “Stratosphere-Troposphere Exchange,” Rev. Geophys. 33, 403–439 (1995).

    Article  Google Scholar 

  43. P. M. Cox, R. A. Betts, and C. D. Jones, et al., “Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model,” Nature 408, 184–187 (2000).

    Article  Google Scholar 

  44. P. Friedlingstein, L. Bopp, P. Ciais, et al., “Positive Feedback between Future Climate Change and the Carbon Cycle,” Geophys. Rev. Lett. 28, 1543–1546 (2001).

    Article  Google Scholar 

  45. P. Friedlingstein, P. Cox, R. Betts, et al., “Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison,” J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  46. P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: a New Data Set from 1850,” J. Geophys. Res. 111, D12106 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Original Russian Text © A.V. Eliseev, I.I. Mokhov, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 2, pp. 232–244.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Mokhov, I.I. Estimating the efficiency of mitigating and preventing global warming with scenarios of controlled aerosol emissions into the stratosphere. Izv. Atmos. Ocean. Phys. 45, 221–232 (2009). https://doi.org/10.1134/S0001433809020078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809020078

Keywords

Navigation