Skip to main content
Log in

Influence of volcanic activity on climate change in the past several centuries: Assessments with a climate model of intermediate complexity

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) is supplemented by a scheme which takes into account the volcanic forcing of climate. With this model, ensemble experiments have been conducted for the 1600s–1900s, in which, along with the volcanic forcing, the anthropogenic forcing due to greenhouse gases and sulfate aerosols and the natural forcing due to variations in solar irradiance were taken into account. The model realistically reproduces the annual mean response of surface air temperature and precipitation to major eruptions both globally and regionally. In particular, the decreases in the annual mean global temperature T g in the IAP RAS CM after the largest eruptions in the latter half of the 20th century, the Mt. Agung (1963), El Chichon (1982), and Mt. Pinatubo (1991) volcanic eruptions, are 0.28, 0.27, and 0.46 K, respectively, in agreement with estimates from observational data. Moreover, in the IAP RAS CM, the volcanic eruptions result in a general precipitation decrease, especially over land in the middle and high latitudes of the Northern Hemisphere. The seasonal distribution of the response shows good agreement with observations for high-latitude eruptions and worse agreement for tropical and subtropical volcanoes. On interdecadal scales, volcanism leads to variations in T g on the order of 0.1 K. In numerical experiments with anthropogenic and natural forcings, the model reproduces a general change in surface air temperature over the past several centuries. Taking into account the volcanic forcing, along with that due to variations in solar irradiance, the model has partly reproduced the nonmonotonic global warming for the 20th century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al.(Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  2. Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  3. A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys. 38(2), 191–219 (2000).

    Article  Google Scholar 

  4. K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Formation Processes and Consequences of Actions of Atmospheric Aerosol: 7. Aerosol Radiative Forcing and Climate,” Opt. Atmos. Okeana 18(7), 535–536 (2005).

    Google Scholar 

  5. N. G. Andronova, E. V. Rozanov, F. Yang, et al., “Radiative Forcing by Volcanic Aerosols from 1850 to 1994,” J. Geophys. Res. D 104(14), 16 807–16 826 (1999).

    Article  Google Scholar 

  6. T. J. Crowley, “Causes of Climate Change—the Past 1000 Years,” Science 289(5477), 270–277 (2000).

    Article  Google Scholar 

  7. J. Hansen, M. Sato, L. Nazarenko, et al., “Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations,” J. Geophys. Res. D 107(18), 4347 (2002).

    Article  Google Scholar 

  8. P. Ya. Groisman, “Regional Climate Forcings of Volcanic Eruptions,” Meteorol. Gidrol., No. 4, 39–45 (1985).

  9. P. Ya. Groisman, “Possible Regional Climate Consequences of the Pinatubo Eruption: An Empirical Approach,” Geophys. Res. Lett. 19(15), 1603–1606 (1992).

    Article  Google Scholar 

  10. H.-F. Graf, I. Kirchner, A. Robock, and I. Schult, “Pinatubo Eruption Winter Climate Effects: Model Versus Observations,” Clim. Dyn. 9(2), 81–93 (1993).

    Google Scholar 

  11. G. L. Stenchikov, I. Kirchner, A. Robock, et al., “Radiative Forcing from the 1991 Mount Pinatubo Volcanic Eruption,” J. Geophys. Res.D 103(12), 13837–13857 (1998).

    Article  Google Scholar 

  12. D. T. Shindell, G. A. Schmidt, R. L. Miller, and D. Rind, “Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar, and Volcanic Forcing,” J. Geophys. Res. D 106(7), 7193–7120 (2001).

    Article  Google Scholar 

  13. L. Oman, A. Robock, G. Stenchikov, et al., “Climatic Response to High-Latitude Volcanic Eruptions,” J. Geophys. Res. D 110(13), D13103 (2005).

    Article  Google Scholar 

  14. A. J. Broccoli, K. W. Dixon, T. L. Delworth, et al., “Twentieth-Century Temperature and Precipitation Trends in Ensemble Climate Simulations Including Natural and Anthropogenic Forcing,” J. Geophys. Res. D 108(24), 4798 (2003).

    Article  Google Scholar 

  15. K. E. Trenberth and A. Dai, “Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle As an Analog of Geoengineering,” Geophys. Res. Lett. 34(15), L15702 (2007).

    Article  Google Scholar 

  16. F. H. Lambert, P. A. Stott, M. R. Allen, and M. A. Palmer, “Detection and Attribution of Changes in 20th Century Land Precipitation,” Geophys. Rev. Lett. 31(10), L10203 (2004).

    Article  Google Scholar 

  17. F. H. Lambert, N. P. Gillett, D. A. Stone, and C. Huntingford, “Attribution Studies of Observed Land Precipitation Changes with Nine Coupled Models,” Geophys. Res. Lett. 32(18), L18704 (2005).

    Article  Google Scholar 

  18. C. Bertrand, M.-F. Loutre, M. Crucifix, and A. Berger, “Climate of the Last Millenium: A Sensitivity Study,” Tellus A 54(3), 221–244 (2002).

    Article  Google Scholar 

  19. E. Bauer, M. Claussen, V. Brovkin, and A. Huenerbein, “Assessing Climate Forcings of the Earth System for the Past Millennium,” Geophys. Res. Lett. 30(6), 1276 (2003).

    Article  Google Scholar 

  20. I. I. Mokhov, “Model Assessments of Possible Climate Changes in the 21st Century in Relation to Climate Changes in the Past and Present,” in Possibilities of Preventing Climate Change and Its negative Consequences: the Problem of the Kyoto Protocol: Materials of the Council-Seminar under the Aegis of the President of the Russian Academy of Sciences (Nauka, Moscow, 2006), pp. 75–93 [in Russian].

    Google Scholar 

  21. T. J. Osborn, S. C. B. Raper, and K. R. Briffa, “Simulated Climate Change during the Last 1,000 Years: Comparing the ECHO-G General Circulation Model with the MAGICC Simple Climate Model,” Clim. Dyn, 27(2–3), 185–197 (2006).

    Article  Google Scholar 

  22. G. A. Meehl, W. M. Washington, B. D. Santer, et al., “Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3,” J. Clim. 19(11), 2597–2616 (2006).

    Article  Google Scholar 

  23. T. R. Knutson, T. L. Delworth, K. W. Dixon, et al., “Assessment of Twentieth-Century Regional Surface Temperature Trends Using the GFDL CM2 Coupled Models,” J. Clim. 19(9), 1624–1651 (2006).

    Article  Google Scholar 

  24. M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  25. S. H. Schneider, “Geoengineering: Could—or Should—We Do It?,” Clim. Change 33(3), 291–302 (1996).

    Article  Google Scholar 

  26. S. H. Schneider, “Earth Systems Engineering and Management,” Nature 409(6868), 417–421 (2001).

    Article  Google Scholar 

  27. Yu. A. Izrael’, “Effective Way for Conserving Climate at the Present-Day Level Is the Main Objective of Solving the Climate Problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).

  28. P. J. Crutzen, “Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?,” Clim. Change 77(3–4), 211–219 (2006).

    Article  Google Scholar 

  29. T. M. L. Wigley, “A Combined Mitigation/Geoengineering Approach to Climate Stabilization,” Science 314(5798), 452–454 (2006).

    Article  Google Scholar 

  30. M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18(18), 579–586 (2002).

    Google Scholar 

  31. V. Petoukhov, M. Claussen, A. Berger, et al., “EM 1—Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn. 25(4), 363–385 (2005).

    Article  Google Scholar 

  32. V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).

    Google Scholar 

  33. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Assessments with the IAP RAS Global Climate Model,” Dokl. Akad. Nauk 402(2), 243–247 (2005).

    Google Scholar 

  34. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Sensitivity of the IAP RAS Global Climate Model with an Interactive Carbon Cycle to Anthropogenic Forcings,” Dokl. Akad. Nauk 407(3), 400–404 (2006).

    Google Scholar 

  35. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Climate and Carbon Cycle Variations in the 20th and 21st Centuries in a Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(1), 3–17 (2007). [Izv., Atmos. Ocean. Phys. 43(1), 1–14 (2007)].

    Google Scholar 

  36. A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., “Interaction of the Methane Cycle and Processes in Wetland Ecosystems in a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(2), 147–162 (2008) [Izv., Atmos. Ocean. Phys. 44(2), 139–152 (2008)].

    Google Scholar 

  37. D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. D 104(22), 27253–27275 (1999).

    Article  Google Scholar 

  38. A. V. Eliseev and I. I. Mokhov, “Carbon Cycle-Climate Feedback Sensitivity to Parameter Changes of a Zero-Dimensional Terrestrial Carbon Cycle Scheme in a Climate Model of Intermediate Complexity,” Theor. Appl. Climatol. 89(1–2), 9–24 (2007).

    Article  Google Scholar 

  39. A. V. Eliseev, I. I. Mokhov, and A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(5), 591–601 (2007) [Izv., Atmos. Ocean. Phys. 43(5), 544–554 (2007)].

    Google Scholar 

  40. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Decadal-to-Centennial Scale Climate-Carbon Cycle Interactions from Global Climate Models Simulations Forced by Anthropogenic Emissions,” in Climate Change Research Progress, Ed. by L. N. Peretz (Nova Publishers, Hauppauge, NY, 2008).

    Google Scholar 

  41. J. Hansen, M. Sato, R. Ruedy, et al., “Efficacy of Climate Forcings,” J. Geophys. Res. D 110(18), D18104 (2005).

    Article  Google Scholar 

  42. M. Stendel, I. A. Mogensen, and J. H. Christensen, “Influence of Various Forcings on Global Climate in Historical Times Using a Coupled Atmosphere-Ocean General Circulation Model,” Clim. Dyn. 26(1), 1–15 (2006).

    Article  Google Scholar 

  43. M.-D. Chou, L. Peng, and A. Arking, “Climate Studies with a Multilayer Energy Balance Model. Part III: Climatic Impact of Stratospheric Volcanic Aerosols,” J. Atmos. Sci. 41(5), 759–767 (1984).

    Article  Google Scholar 

  44. A. Lacis, J. Hansen, and M. Sato, “Climate Forcing by Stratospheric Aerosols,” Geophys. Res. Lett. 19(15), 1607–1610 (1992).

    Article  Google Scholar 

  45. L. L. Stowe, R. M. Carey, and P. P. Pellegrino, “Monitoring the Mt. Pinatubo Aerosol Layer with NOAA/11 AVHRR Data,” Geophys. Res. Lett. 19(2), 159–162 (1992).

    Article  Google Scholar 

  46. A. Robertson, J. Overpeck, D. Rind, et al., “Hypothesized Climate Forcing Time Series for the Last 500 Years,” J. Geophys. Res. D 106(14), 14783–14804 (2001).

    Article  Google Scholar 

  47. C. M. Ammann, G. A. Meehl, W. M. Washington, and C. S. Zender, “A Monthly and Latitudinally Varying Volcanic Forcing Dataset in Simulations of 20th Century Climate,” Geophys. Res. Lett. 30(12), 1657 (2003).

    Article  Google Scholar 

  48. G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2005).

  49. R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus B 55(2), 378–390 (2003).

    Article  Google Scholar 

  50. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Model Assessment of Global Climate Changes in the 21st Century with Consideration for Different Scenarios Variations in Solar Activity,” Dokl. Akad. Nauk 411(2), 250–253 (2006).

    Google Scholar 

  51. D. I. Stern and R. K. Kaufmann, “Estimates of Global Anthropogenic Methane Emissions 1860–1993,” Chemosphere 33(1), 159–176 (1996).

    Article  Google Scholar 

  52. C. MacFarling Meure, Etheridge D., Trudinger et al., “Law Dome CO2, CH4, and N2O Ice Core Records Extended to 2000 Years BP,” Geophys. Res. Lett. 33(14), L14810 (2006).

    Article  Google Scholar 

  53. L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. D 111(22), D22211 (2006).

    Article  Google Scholar 

  54. Y.-M. Wang, J. Lean, and N. R. Sheeley, “Modeling the Sun’s Magnetic Field and Irradiance since 1713,” Astrophys. J. 625, 522–538 (2005).

    Article  Google Scholar 

  55. P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, and I. I. Mokhov, “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(1), 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42(1), 32–39 (2006)].

    Google Scholar 

  56. G. A. Zielinski, P. A. Mayewski, L. D. Meeker, et al., “Record of Volcanism since 7000 B.C. from the GISP2 Greenland Ice Core and Implication for the Volcano-Climate System,” Science 264(5161), 948–952 (1994).

    Article  Google Scholar 

  57. T. M. L. Wigley, “ENSO, Volcanoes and Record-Breaking Temperatures,” Geophys. Res. Lett. 27(24), 4101–4104 (2000).

    Article  Google Scholar 

  58. B. J. Soden, R. T. Wetherald, G. L. Stenchikov, and A. Robock, “Global Cooling after the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor,” Science 296(5568), 727–730 (2002).

    Article  Google Scholar 

  59. P. M. Kelly, P. D. Jones, and J. Pengqun, “The Spatial Response of the Climate System to Explosive Volcanic Eruptions,” Int. J. Climatol. 16(5), 537–550 (1996).

    Article  Google Scholar 

  60. G. Stenchikov, K. Hamilton, R. J. Stouffer, et al., “Arctic Oscillation Response to Volcanic Eruptions in the IPCC AR4 Climate Models,” J. Geophys. Res. D 111(7), D07107 (2006).

    Article  Google Scholar 

  61. A. S. Monin and Yu. A. Shishkov, Climate History (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  62. K. Braganza, D. J. Karoly, A. C. Hirst, et al., “Simple Indices of Global Climate Variability and Change: Part I. Variability and Correlation Structure,” Clim. Dyn. 20(5), 491–502 (2003).

    Google Scholar 

  63. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Relationship between Variations in Global Surface Temperature and Solar Activity from the Data of Observations and Reconstructions for the 17th–20th Centuries and from Model Calculations, Dokl. Akad. Nauk. 409(1), 115–119 (2006).

    Google Scholar 

  64. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Model Estimations of Possible Climate Changes in the 21st Century under Different Scenarios of Solar and Volcanic Activity and Anthropogenic Forcings,” Kosm. Issled. 46(4), 363–367 (2008).

    Google Scholar 

  65. T. L. Delworth and T. R. Knutson, “Simulation of Early 20th Century Global Warming,” Science 287(5461), 2246–2250 (2000).

    Article  Google Scholar 

  66. O. M. Johannessen, L. Bengtsson, M. W. Miles, et al., “Arctic Climate Change: Observed and Modelled Temperature and Sea-Ice Variability,” Tellus A 56(4), 328–341 (2004).

    Article  Google Scholar 

  67. V. A. Semenov, “Structure of Temperature Variability in the High Latitudes of the Northern Hemisphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(6), 744–753 (2007) [Izv., Atmos. Ocean. Phys. 43(6), 687–695 (2007)].

    Google Scholar 

  68. P. Foukal and G. North, and T. Wigley, “A Stellar View on Solar Variations and Climate,” Science 305(5693), 68–69 (2004).

    Article  Google Scholar 

  69. P. Foukal, C. Frohlich, H, Spruit, T. M. L. Wigley, “Variations in Solar Luminosity and Their Effect on the Earth’s Climate,” Nature, 443(7108), 161–166 (2006).

    Article  Google Scholar 

  70. Anthropogenic Climate Changes, Ed. by M. I. Budyko and Yu. A. Izrael’ (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  71. I. I. Mokhov and A. V. Eliseev, “Tropospheric and Stratospheric Temperature Annual Cycle: Tendencies of Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 33(4), 452–463 (1997) [Izv., Atmos. Ocean. Phys. 33(4), 415–426 (1997)].

    Google Scholar 

  72. A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 20(1), 1–16 (2003).

    Google Scholar 

  73. A. V. Eliseev, I. I. Mokhov, and M. S. Guseva, “Sensitivity of Amplitude-Phase Characteristics of the Surface Air Temperature Annual Cycle to Variations in Annual Mean Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(3), 326–340 (2006) [Izv., Atmos. Ocean. Phys. 42(3), 300–312 (1997)].

    Google Scholar 

  74. I. I. Mokhov and A. V. Eliseev, “Geoengineering Efficiency: Preliminary Assessment with a Climate Model of Intermediate Complexity,” in Research Activities in Atmospheric and Oceanic Modelling, Ed. by J. Cote (World Climate Research Programme, Geneva, 2008).

    Google Scholar 

  75. P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850,” J. Geophys. Res. D 111(12), D12106 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Original Russian Text © A.V. Eliseev, I.I. Mokhov, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 6, pp. 723–736.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Mokhov, I.I. Influence of volcanic activity on climate change in the past several centuries: Assessments with a climate model of intermediate complexity. Izv. Atmos. Ocean. Phys. 44, 671–683 (2008). https://doi.org/10.1134/S0001433808060017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808060017

Keywords

Navigation