Skip to main content
Log in

Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study is devoted to the construction of some numerical solutions to the previously proposed model equations for three-dimensional disturbances of a small but finite amplitude in liquids of a constant depth. The forms of progressive steady-state waves (both periodic in two horizontal coordinates and solitary) are demonstrated. In a homogeneous liquid, these forms depend on the magnitudes and directions of the wave vectors, whereas, in bodies of water with a small density jump, they also depend on the ratio of layer depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya, “A Fully Nonlinear Boussinesq Model for Surface Waves: Part 1. Highly Nonlinear Unsteady Waves,” J. Fluid Mech. 294, 71–92 (1995).

    Article  Google Scholar 

  2. P. A. Madsen and H. A. Schaffer, “Higher Order Boussinesq-Type Equations for Surface Gravity Waves—Derivation and Analysis,” Phil. Trans. R. Soc. London A 356, 3123–3181 (1998).

    Article  Google Scholar 

  3. Y. Agnon, P. A. Madsen, and H. A. Schaffer, “A New Approach to High Order Boussinesq Models,” J. Fluid Mech. 399, 319–333 (1999).

    Article  Google Scholar 

  4. P. A. Madsen, H. B. Bingham, and H. Liu, “A New Boussinesq Method for Fully Nonlinear Waves from Shallow to Deep Water,” J. Fluid Mech. 462, 1–30 (2002).

    Article  Google Scholar 

  5. P. A. Madsen, H. B. Bingham, and H. A. Schaffer, “Boussinesq-Type Formulations for Fully Nonlinear and Extremely Dispersive Water Waves: Derivation and Analysis,” Proc. R. Soc. London A 459, 1075–1104 (2003).

    Article  Google Scholar 

  6. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  7. H. B. Bingham and Y. Agnon, “A Fourier-Boussinesq Method for Nonlinear Water Waves,” Eur. J. Mech. 24, 255–274 (2005).

    Article  Google Scholar 

  8. G. A. Khabakhpashev, “Differential Method of Modeling Weakly Nonlinear Waves on Water of Variable Depth,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32, 841–847 (1996) [Izv., Atmos. Ocean. Phys. 32, 773–778 (1996)].

    Google Scholar 

  9. G. A. Khabakhpashev, “Propagation of Internal and Surface Two-Dimensional Waves in an Ocean with a Density Jump and a Gently Sloping Bottom,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37, 397–406 (2001) [Izv., Atmos. Ocean. Phys. 37, 368–377 (2001)].

    Google Scholar 

  10. O. Yu. Tsvelodub and L. N. Kotychenko, “Spatial Waves Regimes on a Surface of Thin Viscous Liquid Film,” Physica D (Amsterdam) 63, 361–377 (1993).

    Google Scholar 

  11. A. A. Bocharov and O. Yu. Tsvelodub, “Wave Regimes of Viscous Film Flow Down a Vertical Cylinder,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 176–183 (2003).

  12. G. H. Keulegan, “Characteristics of Internal Solitary Waves,” J. Res. Natl. Bureau Stand. 51(3), 133–140 (1953).

    Google Scholar 

  13. A. S. Peters and J. J. Stoker, “Solitary Waves in Liquids Having Nonconstant Density,” Comm. Pure Appl. Math. 13, 115–164 (1960).

    Article  Google Scholar 

  14. T. Kakutani and N. Jamasaki, “Solitary Models of Long Internal Waves,” J. Phys. Soc. Jpn. 45, 674–679 (1978).

    Article  Google Scholar 

  15. D. E. Pelinovsky and Yu. A. Stepanyants, “Solitary Wave Instability in the Positive-Dispersion Media Described by the Two-Dimensional Boussinesq Equations,” Zh. Eksp. Teor. Fiz. 106, 192–206 (1994).

    Google Scholar 

  16. F. Wessels and K. Hutter, “Interaction of Internal Waves with a Topographic Sill in a Two-Layered Fluid,” J. Phys. Oceanogr. 26, 5–20 (1996).

    Article  Google Scholar 

  17. J. Maurer, K. Hutter, and S. Diebels, “Viscous Effect in Internal Waves of Two-Layered Fluid with Variable Depth,” Eur. J. Mech 15(4), 445–470 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bocharov.

Additional information

Original Russian Text © A.A. Bocharov, G.A. Khabakhpashev, O.Yu. Tsvelodub, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 4, pp. 543–552.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocharov, A.A., Khabakhpashev, G.A. & Tsvelodub, O.Y. Numerical solution of the equations for spatial nonlinear steady-state traveling waves on the free surfaces of homogeneous and two-layer bodies of water. Izv. Atmos. Ocean. Phys. 44, 507–516 (2008). https://doi.org/10.1134/S0001433808040117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808040117

Keywords

Navigation