Skip to main content
Log in

Study of the possibility of stimulating precipitation from warm convective clouds by hygroscopic particles from numerical simulation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present the results of numerical simulation of the action of hygroscopic particles on a convective cloud for obtaining additional precipitation. The correspondence of vertical profiles of cloud parameters to those actually observed under natural atmospheric conditions is achieved within a one-dimensional numerical model by parametrization of the process of heat and moisture entrainment into the upward air flow forming the cloud. The model describes in detail microphysical processes in a cloud with the use of the kinetic equation for the size distribution of cloud droplets. The processes of forming precipitation in convective clouds with a vertical thickness of 3–4 km during their natural development and during the introduction of hygroscopic particles are analyzed using numerical calculations. It is shown that it is actually possible to obtain additional precipitation from convective clouds of continental type under the action of hygroscopic particles with sizes of 1–1.5 μm. The results of calculating the intensity and total amount of precipitation as functions of the vertical thickness of a cloud and the parameters of particles introduced into it are presented. The conditions necessary for obtaining the maximum positive effect are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Shmeter and G. P. Beryulev, “Efficiency of Artificial Modification of Clouds and Precipitation with the Aid of Hygroscopic Aerosols,” Meteorol. Gidrol., No. 2, 43–60 (2005).

  2. G. K. Mather, D. E. Terblanche, F. E. Steffens, and L. Fletcher, “Results of South African Cloud-Seeding Experiments Using Hygroscopic Flares,” J. Appl. Meteorol. 36, 1433–1447 (1997).

    Article  Google Scholar 

  3. W. A. Cooper, R. T. Bruintjes, and G. K. Mather, “Some Calculations Pertaining to Hygroscopic Seeding with Flares,” J. Appl. Meteorol. 36, 1449–1469 (1997).

    Article  Google Scholar 

  4. D. Caro, W. Wobrock, and A. I. Flossman, “A Numerical Study on the Impact Hygroscopic Seeding on the Development of Cloud Particle Spectra,” J. Appl. Meteorol. 41, 333–350 (2002).

    Article  Google Scholar 

  5. Y. Segal, A. Khain, M. Pinsky, and D. Rosenfield, “Effect of Hygroscopic Seeding on Raindrop Formation As Seen from Simulation Using a 2000 Bin Spectral Cloud Parcel Model,” Atmos. Res. 71, 3–34 (2004).

    Article  Google Scholar 

  6. A. S. Drofa, “Numerical Simulation of the Action on a Warm Convective Cloud by Hygroscopic Particles,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 623–635 (2007) [Izv., Atmos. Ocean. Phys. 43, 574–585 (2007)].

    Google Scholar 

  7. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  8. L. T. Matveev, Course of General Meteorology: Atmospheric Physics (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  9. S. M. Shmeter, Thermodynamics and Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  10. Yu. S. Sedunov, Physics of Forming the Liquid-Drop Phase in the Atmosphere (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  11. A. I. Flossman, W. D. Hall, and H. R. Pruppacher, “A Theoretical Study of the Wet Removal of Atmospheric Pollutants,” J. Atmos. Sci. 42, 583–606 (1985).

    Article  Google Scholar 

  12. A. S. Drofa, “Formation of Cloud Microstructure During Hygroscopic Seeding,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 355–366 (2006) [Izv., Atmos. Ocean. Phys. 42, 326–336 (2007)].

    Google Scholar 

  13. V. M. Voloshchuk and Yu. S. Sedunov, Processes of Coagulation in Disperse Systems (Gidrometeoizdat, Leningrad, 1975) [in Russian].

    Google Scholar 

  14. R. S. Srivastava, “Size Distribution of Raindrops Generated by Breakup and Coalescence,” J. Atmos. Sci. 28, 410–415 (1971).

    Article  Google Scholar 

  15. M. Komabayashi, T. Gonda, and K. Isono, “Lifetime of Water Drops before Breaking and Size Distribution of Fragment Droplets,” J. Meteorol. Soc. Jpn. 42, 330–340 (1964).

    Google Scholar 

  16. A. Kovets and B. Olund, “The Effect of Coalescence and Condensation on Rain Formation in a Cloud of Finite Vertical Extent,” J. Atmos. Sci. 26, 1060–1065 (1969).

    Article  Google Scholar 

  17. H. T. Ochs and K. V. Beard, “Effect of Coalescence Efficiencies on the Formation of Precipitation,” J. Atmos. Sci. 42, 1451–1454 (1985).

    Article  Google Scholar 

  18. T. L. Clark, “Numerical Modeling of the Dynamics and Microphysics of Warm Cumulus Convection,” J. Atmos. Sci. 30, 857–878 (1973).

    Article  Google Scholar 

  19. Y. L. Kogan, “The Simulation of a Convective Cloud in a 3-D Model with Explicit Microphysics,” J. Atmos. Sci. 48, 1160–1189 (1991).

    Article  Google Scholar 

  20. I. P. Mazin and S. M. Shmeter, Clouds: Structure and the Physics of Formation (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  21. F. Ya. Voit and I. P. Mazin, “Water Content of Cumulus Clouds,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8, 1166–1176 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Drofa.

Additional information

Original Russian Text © A.S. Drofa, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 4, pp. 435–449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drofa, A.S. Study of the possibility of stimulating precipitation from warm convective clouds by hygroscopic particles from numerical simulation. Izv. Atmos. Ocean. Phys. 44, 402–415 (2008). https://doi.org/10.1134/S0001433808040026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808040026

Keywords

Navigation