Skip to main content
Log in

Modeling the sea currents in open basins: The case study for the Hawaiian Island region

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The fields of currents in open basins are studied with the use of a mathematical model of ocean hydrodynamics. The area of the Hawaiian Islands is taken as an example. The model, based on three-dimensional equations of thermohydrodynamics, is solved for a domain with open boundaries, at which adaptive boundary conditions are set. We analyze the results of numerical experiments with given monthly mean climatic conditions at the ocean surface and open lateral boundaries with consideration for tides M 2 and K 1. A comparison of the model solutions and observational data shows that the model can realistically reproduce the mean parameters of the ocean state and their variability. The model solutions for the given area were found to have a northward current in the upper oceanic layer. This current clearly manifests itself in averaged fields. The characteristics of averaged currents indicate that the upper 100–150-m layer between the islands of Hawaii and Maui as well as between the islands of Molokai and Oahu is characterized by water transport from the west to the east side of the ridge of islands. The results obtained and the model proposed can be used to monitor physical fields of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Bondur, Aerospace Methods in Modern Oceanology, Ed. by M. E. Vinogradov and S. S. Lappo (Nauka, Moscow, 2004), pp. 55–117 [in Russian].

    Google Scholar 

  2. V. G. Bondur, “Complex Satellite Monitoring of Coastal Water Areas,” in Proceedings of 31 International Symposium on Remote Sensing of Environment (St. Petersburg, 2005).

  3. Atlas of Oceans. Pacific Ocean, Ed. by S. G. Gorshkov (USSR Ministry of Defense, Moscow, 1974) [in Russian].

    Google Scholar 

  4. Atlas of Hawaii, Ed. by S. P. Juvik and J. O. Juvik (Univ. of Hawaii Press, Honolulu, 1998).

    Google Scholar 

  5. W. White, “A Narrow Boundary Current along the Eastern Side of the Hawaiian Ridge: The North Hawaiian Ridge Current,” J. Phys. Oceanogr. 13, 1726–1731 (1983).

    Article  Google Scholar 

  6. J. M. Price, M. L. Van Woert, and M. Vatousek, “On the Possibility of a Ridge Current along the Hawaiian Islands,” J. Geophys. Res. C 99, 14 101–14 112 (1994).

    Google Scholar 

  7. F. M. Bingham, “Evidence for the Existence of a North Hawaiian Ridge Current,” J. Phys. Oceanogr. 28, 991–998 (1998).

    Article  Google Scholar 

  8. E. Firing, “Currents Observed North of Oahu during the First Five Years of HOT,” Deep-Sea Res. 43, 281–303 (1996).

    Article  Google Scholar 

  9. E. Firing, B. Qiu, and W. Miao, “Time-Dependent Island Rule and Its Application to the Time-Varying North Hawaiian Ridge Current,” J. Phys. Oceanogr. 29, 2671–2688 (1999).

    Article  Google Scholar 

  10. B. Qiu, D. A. Koh, and C. Lumpkin, “Flament. P. Existence and Formation Mechanism of the North Hawaiian Ridge Current,” J. Phys. Oceanogr. 27, 431–444 (1997).

    Article  Google Scholar 

  11. W. C. Patzert, Eddies in Hawaiian Waters (Hawaii Inst. of Geophysics, Hawaii, 1969), No. 69-08.

    Google Scholar 

  12. G. T. Mitchum, “The Source of 90-Day Oscillations at Wake Island,” J. Geophys. Res. C 100, 2459–2475 (1995).

    Article  Google Scholar 

  13. C. L. Holland and G. T. Mitchum, “Propagation of Big Island Eddies,” J. Geophys. Res. C 106, 935–944 (2001).

    Article  Google Scholar 

  14. P. Flament, Ocean Atlas of Hawaii (1996); http://radlab.soest.hawaii.edu/atlas/currents.html

  15. A. S. Sarkisyan, Principles of Theory and Calculation of Ocean Currents (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  16. A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  17. K. Bryan, “A Numerical Method for the Study of the Circulation of the World Ocean,” J. Comput. Phys. 4, 347–376 (1969).

    Article  Google Scholar 

  18. Yu. L. Demin and R. A. Ibrayev, “Model of Ocean Dynamics,” in Numerical Models and Results of Calibration Calculations of Currents in the Atlantic Ocean (Inst. of Numerical Mathematics of the Russian Academy of Sciences, Moscow, 1992), pp. 42–95 [in Russian].

    Google Scholar 

  19. R. A. Ibraev, “Reconstruction of Climatic Characteristics of the Gulf Stream techeniya Gol’fstrim,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29, 803–814 (1993).

    Google Scholar 

  20. A. S. Sarkisyan, “Analysis of Model Calibration Results: Atlantic Ocean Climatic Calculations,” J. Mar. Syst. 5, 47–66 (1995).

    Article  Google Scholar 

  21. R. A. Ibrayev, “Model of Enclosed and Semi-Enclosed Sea Hydrodynamics,” Russ. J. Numer. Anal. Math. Model. 16, 291–304 (2001).

    Google Scholar 

  22. ETOPO2. http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

  23. WOA2001. World Ocean Atlas 2001. High resolution (1/4 degree) Temperature and Salinity Analyses of the World’s Oceans. Version 2. http://www.nodc.noaa.gov/OC5/WOA01/

  24. F. Roske, An Atlas of Surface Fluxes Based on the ECMWF Re-Analysis—A Climatological Dataset to Force Global Ocean General Circulation Models (Max-Planck-Inst. fur Meteorologie, Hamburg, 2001).

    Google Scholar 

  25. J. K. Gibson, P. Kallberg, S. Uppala, et al., ERA-15 Description (Version 2), ECMEF Re-Analysis Project Report Series, No. 1 (1999).

  26. G. I. Marchuk and B. A. Kagan, Dynamics of Ocean Tides (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  27. A. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986).

    Google Scholar 

  28. D. Praudman, Dynamic Oceanography (Wiley, London, 1953; Inostrannaya Literatura, Moscow, 1957).

    Google Scholar 

  29. A. L. Perkins, L. F. Smedstad, D. V. Blake, et al., “A New Nested Boundary Condition for a Primitive Equation Ocean Model,” J. Geophys. Res. C 102, 3483–3500 (1997).

    Article  Google Scholar 

  30. P. Marschesiello, J. C. McWiliams, and A. Shchepetkin, “Open Boundary Conditions for Long-Term Integration of Regional Oceanic Models,” Ocean Model. 3, 1–20 (2001).

    Article  Google Scholar 

  31. K. Wyrtki, “Eddies in the Pacific North Equatorial Current,” J. Phys. Oceanogr. 12, 746–749 (1982).

    Article  Google Scholar 

  32. UNESCO. Seventh Report of the Joint Panel on Oceanographic Tables and Standards, UNESCO Techn. Papers. Mar. Sci., No. 24, 39–54 (1976).

  33. W. H. Munk and E. R. Anderson, “Note on the Theory of the Thermocline,” J. Mar. Res. 7, 276–295 (1948).

    Google Scholar 

  34. W. H. Raymond and H. L. Kuo, “A Radiation Boundary Condition for Multi-Dimensional Flows,” Q. J. R. Meteorol. Soc. 110, 535–551 (1984).

    Article  Google Scholar 

  35. I. Orlansky, “A Simple Boundary Condition for Unbounded Hyperbolic Flows,” J. Comput. Phys. 21, 251–269 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Original Russian Text © V.G. Bondur, R.A. Ibrayev, Yu.V. Grebenyuk, G.A. Sarkisyan, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 2, pp. 239–250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondur, V.G., Ibrayev, R.A., Grebenyuk, Y.V. et al. Modeling the sea currents in open basins: The case study for the Hawaiian Island region. Izv. Atmos. Ocean. Phys. 44, 225–235 (2008). https://doi.org/10.1134/S0001433808020102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808020102

Keywords

Navigation