Skip to main content
Log in

Numerical modeling of hydrophysical fields of the Black Sea under the conditions of alternation of atmospheric circulation processes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The hydrological regime of the Black Sea in the conditions of permanent alternation of atmospheric circulation processes was investigated on the basis of a baroclinic prognostic model of the sea dynamics. In the model, variations in the wind action were expressed as permanent alternation of 24 wind types characteristic of the Black Sea basin throughout the year. Thermohaline impact of the atmosphere was taken into account by specifying the annual trends of temperature and salinity at the sea surface, which was established from multiyear means of these parameters. The problem was solved numerically on the basis of the method of two-cycle splitting with the use of the grid with a horizontal spacing of 5 km. Results of the numerical experiment showed that, under the influence of a strong nonstationarity of atmospheric processes, the water circulation in the upper layer of the Black Sea changes qualitatively and quantitatively. The upper 20–30-m layer of the sea is particularly sensitive to atmospheric circulation variations. For any character of atmospheric circulation, the Black Sea circulation below this layer is nearly always cyclonic with internal cyclonic rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas of Black Sea Waves and Wind (Gidrometeoizdat, Leningrad, 1969) [in Russian].

  2. Handbook on the Black Sea Climate (Gidrometeoizdat, Moscow, 1974) [in Russian].

  3. A. Kordzadze and D. Demetrashvili, “Numerical Modeling of Inner-Annual Variability of the Hydrological Regime of the Black Sea with Taking into Account of Alternation of Different Types of the Wind above Its Surface,” in Proceedings of the International Conference “A Year after Johannesburg-Ocean Governance and Sustainable Development: Ocean and Coasts—A Glimpse into the Future” (Kiev, 2003), pp. 494–505.

  4. A. A. Kordzadze, D. I. Demetrashvili, and A. A. Surmava, “On the Response of the Black Sea Hydrological Regime on the Variability of Atmospheric Processes,” in Environmental Safety of the Coastal and Shelf Areas and a Complex Use of Shelf Resources (EKOSI-Gidrofizika, Sevastopol, 2004), No. 10, pp. 265–277 [in Russian].

    Google Scholar 

  5. D. Kvaratskhelia, “Numerical Investigation of the Black Sea Surface Currents under Nonstationary Atmospheric Forcing Conditions within the Framework of a Barotropic Model,” J. Georg. Geophys. Soc. 6b, 23–32 (2001).

    Google Scholar 

  6. E. V. Stanev and V. Rusenov, “Numerical Simulation of the Seasonal Variability of Sea Currents,” in Complex Global Monitoring of the World Ocean (Gidrometeoizdat, Leningrad, 1985), pp. 120–129 [in Russian].

    Google Scholar 

  7. A. Girgvliani, “Calculation of Seasonal Variability of the Hydrological Characteristics of the Black Sea,” J. Georg. Geophys. Soc. 3b, 17–26 (1998).

    Google Scholar 

  8. S. G. Demyshev and G. K. Korotaev, “Numerical Modeling of the Seasonal Trend of Synoptic Variability of the Black Sea,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32, 108–116 (1996) [Izv., Atmos. Ocean. Phys. 32, 99–106 (1996)].

    Google Scholar 

  9. K. A. Korotenko, D. E. Ditrikh, and M. Dzh. Bouman, “Modeling the Circulation and Transport of Oil Patches in the Black Sea,” Okeanologiya 43, 367–378 (2003).

    Google Scholar 

  10. E. V. Stanev and J. M. Beckers, “Numerical Simulations of Seasonal and Interannual Variability of the Black Sea Thermohaline Circulation,” J. Mar. Sys. 22, 241–267 (1999).

    Article  Google Scholar 

  11. A. Kordzadze and D. Demetrashvili, “Numerical Modeling of Seasonal Variability of Large-Scale Hydrophysical Processes in the Black Sea,” J. Georg. Geophys. Soc. 3b, 49–58 (1998).

    Google Scholar 

  12. A. Kordzadze and D. Demetrashvili, “On a Coupled Sea-Atmosphere Regional Numerical Model,” J. Georg. Geophys. Soc. 4b, 3–14 (1999).

    Google Scholar 

  13. A. B. Kara, A. J. Wallcraft, and H. E. Hurlburt, “A New Solar Radiation Penetration Scheme for Use in Ocean Mixed Layer Studies: An Application to the Black Sea Using a Fine-Resolution Hybrid Coordinate Ocean Model (HYCOM),” J. Phys. Oceanogr. 35, 13–32 (2005).

    Article  Google Scholar 

  14. A. B. Kara, A. J. Wallcraft, and H. E. Hurlburt, “Sea Surface Temperature Sensitivity to Water Turbidity from Simulations of the Turbid Black Sea Using HYCOM,” J. Phys. Oceanogr. 35, 33–54 (2005).

    Article  Google Scholar 

  15. A. B. Kara, A. J. Wallcraft, and H. E. Hurlburt, “How Does Attenuation Depth Affect the Ocean Mixed Layer? Water Turbidity and Atmospheric Forcing Impacts on the Simulation of Seasonal Mixed Layer Variability in the Turbid Black Sea,” J. Clim. 18, 389–409 (2005).

    Article  Google Scholar 

  16. A. A. Kordzadze and Yu. N. Skiba, “Numerical Calculations of Major Characteristics of the Black Sea with a Three-Dimensional Model,” Preprint, VTs SO AN (Computer Center, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 1973).

    Google Scholar 

  17. G. I. Marchuk, A. A. Kordzadze, and Yu. N. Skiba, “Calculation of Major Hdrological Fields of the Black Sea on the Basis of the Splitting Method,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 11, 379–393 (1975).

    Google Scholar 

  18. G. I. Marchuk, A. A. Kordzadze, and V. B. Zalesnyi, “Problem of Mathematical Modeling of Sea and Ocean Currents,” in Differential and Integral Equations: Boundary-Value Problems (Tbilisi, 1979), pp. 99–151 [in Russian].

  19. G. I. Marchuk and A. A. Kordzadze, “Perturbation Theory and the Formulation of Inverse Problems of Ocean Dynamics,” Tr. Tbilisskogo Univ., Mat., Mekh, Astron. 259(19–20), 49–65 (1986).

    Google Scholar 

  20. O. I. Mamaev, “Simplified Relationship between the Density, Temperature, and Salinity of Seawater,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 2, 309–311 (1964).

  21. M. I. Budyko, Heat Balance of the Earth’s Surface (Gidrometeoizdat, Leningrad, 1956) [in Russian].

    Google Scholar 

  22. G. G. Berlyand, “Method of Climatological Calculation of the Net Radiation,” Meteorol. Gidrol., No. 6, 9–12 (1960).

  23. S. S. Zilitinkevich and A. S. Monin, Turbulence in Dynamic Models of the Atmosphere (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  24. G. I. Marchuk, Methods of Numerical Mathematics, 2nd ed. (Nauka, Moscow, 1980; Springer, New York, 1975).

    Google Scholar 

  25. A. A. Kordzadze, Mathematical Problems of Solving Problems of Ocean Dynamics (VTs SO AN SSSR, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  26. V. I. Sukhonosov, “On the Correctness As a Whole of a Three-Dimensional Problem of Ocean Dynamics,” in Mechanics of Inhomogeneous Continuous Media (VTs SO AN SSSR, Novosibirsk, 1981), No. 52, pp. 37–53 [in Russian].

    Google Scholar 

  27. G. I. Marchuk, Numerical Solution of Problems of Atmospheric and Oceanic Dynamics (Gidrometeozdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  28. A. A. Kordzadze, Mathematical Modeling of Sea Currents (Theory, Algorithms, Numerical Experiments) (OVM AN SSSR, Moscow, 1989) [in Russian].

    Google Scholar 

  29. K. Ya. Kondrat’ev, V. F. Zhvalov, V. I. Korzov, et al., “Albedo and Its Parametrization for Climatic Calculations,” in Trudy GGO (Gidrometeoizdat, Leningrad, 1987), No. 507, pp. 24–50 [in Russian].

    Google Scholar 

  30. Handbook on the Black Sea Climate (Gidrometeoizdat, Moscow, 1974) [in Russian].

  31. J. Harvey, The Atmosphere and Ocean (1976; Progress, Moscow, 1986).

    Google Scholar 

  32. J. V. Staneva and E. V. Stanev, “Oceanic Response to Atmospheric Forcing Derived from Different Climatic Data Sets. Intercomparison Study for the Black Sea,” Oceanologia Acta 21, 383–417 (1998).

    Article  Google Scholar 

  33. A. Kordzadze, K. Tavartkiladze, and D. Kvaratskhelia, “A Structure of the Wind Continuous Field on the Black Sea Surface,” J. Georg. Geophys. Soc. 5b, 28–38 (2000).

    Google Scholar 

  34. E. Stanev, D. Trukhchev, and V. Rusenov, Circulation of Waters and Numerical Simulation of Black Sea Currents (Kliment Okhridski, Sofia, 1988) [in Russian].

    Google Scholar 

  35. S. G. Boguslavskii, V. V. Efimov, L. V. Cherkesov, et al., Complex Oceanographic Studies of the Black Sea (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  36. T. Oguz, V. S. Latun, M. A. Latif, et al., “Circulation in the Surface and Intermediate Layers in the Black Sea,” Deep-Sea Res. 1(40), 597–612 (1993).

    Google Scholar 

  37. H. Lacombe, Cours d’Oceanographie Physique (Gauthier-Villars, Paris, 1965; Mir, Moscow, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kordzadze.

Additional information

Original Russian Text © A.A. Kordzadze, D.I. Demetrashvili, A.A. Surmava, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 2, pp. 227–238.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordzadze, A.A., Demetrashvili, D.I. & Surmava, A.A. Numerical modeling of hydrophysical fields of the Black Sea under the conditions of alternation of atmospheric circulation processes. Izv. Atmos. Ocean. Phys. 44, 213–224 (2008). https://doi.org/10.1134/S0001433808020096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808020096

Keywords

Navigation