Skip to main content
Log in

Integral microphysical parameters of stratospheric background aerosol for 2002–2005 (the SAGE III satellite experiment)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The surface area and volume densities (S and V) of the particles of stratospheric background aerosol in the 15–20 km and 20–25 km layers for 2002–2005 were obtained from measurements of the aerosol extinction coefficient with the SAGE III instrument by using the linear-regression method of solving the inverse problem. The measurements were taken within the latitudinal belts 43°–80°N and 34°–58°S. The spatial and temporal dependences of S and V demonstrate homogeneous distribution fields in summer, whereas noticeable inhomogeneities are observed in winter and early spring. In all years of the measurements, an increase in the integral characteristics of stratospheric background aerosol was observed during the fall-to-winter transition period. Longitudinal variations in S and V can be both slight and significant (50–70%). Analysis of the interannual variability of the mean areas and volumes of aerosol particles shows that their minima (as a rule) were observed in 2002 and their maxima were observed in 2005. In most of the cases, no monotonic annual variations in the aerosol characteristics are noted. The dependence of the aerosol parameters on the phase of the quasi-biennial oscillations of zonal wind in the stratosphere is observed. The data obtained for 2002–2005 are, on the whole, in good agreement with the climatological data obtained for 1996–1999.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assessment of Stratospheric Aerosol Properties (ASAP), Ed. by L. Thomason and Th. Peter, SPARC Report No. 4 (WCRP-124, WMO/TD-No. 1295, 2006).

  2. L. W. Thomason, G. S. Kent, et al., “A Comparison of the Stratospheric Aerosol Background Periods of 1979 and 1989–1991,” J. Geophys. Res. D 102, 3611–3616 (1997).

    Article  Google Scholar 

  3. T. R. Deshler, T. R. Andersen-Sprecher, et al., “Trends in the Nonvolcanic Component of Stratospheric Aerosol over the Period 1971–2004,” J. Geophys. Res. 111, D01202, doi: 10.1029/2005JG006089 (2006).

  4. M. P. McCormick, “SAGE II: An Overview,” Adv. Space Res. 7(2), 73–86 (1987).

    Article  Google Scholar 

  5. M. T. Osborn, J. M. Rosen, et al., “SAGE II Aerosol Correlative Observations: Profile Measurements,” J. Geophys. Res. D 94, 8353–8366 (1989).

    Article  Google Scholar 

  6. M. E. Hervig, J. M. Russel, et al., “Observations of Aerosol by the HALOE Experiment Onboard UARS: Preliminary Validation,” Geophys. Rev. Lett. 20, 1291–1294 (1993).

    Article  Google Scholar 

  7. J. D. Lumpe, R. M. Bevilacqua, et al., “POAM II Retrieval Algorithm and Error Analysis,” J. Geophys. Res. D 102, 23 593–23 614 (1997).

    Article  Google Scholar 

  8. A. V. Poberovskii, A. V. Polyakov, Yu. M. Timofeev, et al., “Ozone Profile Determination by Occultation Sounding from the Mir Space Station: 1. Instrumentation and Data Processing Method,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35, 312–321 (1999) [Izv., Atmos. Ocean. Phys. 35, 282–290 (1999)].

    Google Scholar 

  9. K. S. Shifrin and A. Ya. Perel’man, “Determination of the Spectrum of Particles of a Disperse System from Data on Its Transparency,” Opt. Spektrosk. 20, 143–153 (1966).

    Google Scholar 

  10. J. Heintzenberg, H. Muller, et al., “Information Content of Optical Data with Respect to Aerosol Properties: Numerical Studies with a Randomized Minimization-Search-Technique Inversion Algorithm,” Appl. Opt. 20, 1308–1315 (1981).

    Google Scholar 

  11. G. K. Yue and A. Deepak, “Retrieval of Stratospheric Aerosol Size Distribution from Atmospheric Extinction of Solar Radiation at Two Wavelengths,” Appl. Opt. 22, 1639–1645 (1983).

    Article  Google Scholar 

  12. G. K. Yue, M. P. McCormick, and W. P. Chu, “Retrieval of Composition and Size Distribution of Stratospheric Aerosols with the SAGE II Satellite Experiment,” J. Atmos. Ocean. Technol., No. 3, 371–380 (1986).

  13. C. Brogniez and J. Lenoble, “Size Distribution of Stratospheric Aerosol from SAGE II Multiwavelength Extinction,” in Aerosol and Climate, Ed. by P. V. Hobbs and M. P. McCormick (Deepak, Hampton, 1988).

    Google Scholar 

  14. P. H. Wang, M. P. McCormick, et al., “Inference of Stratospheric Aerosol Composition and Size Distribution from SAGE II Satellite Measurements,” J. Geophys. Res. D 94, 8435–8446 (1989).

    Article  Google Scholar 

  15. L. W. Thomason, “A Diagnostic Aerosol Size Distribution Inferred from SAGE II Measurements,” J. Geophys. Res. D 96, 22 501–22 508 (1991).

    Article  Google Scholar 

  16. R. G. Grainger, A. Lambert, C. D. Rodgers, et al., “Stratospheric Aerosol Effective Radius, Surface Area and Volume Estimated from Infrared Measurements,” J. Geophys. Res. D 100, 16 507–16 518 (1995).

    Article  Google Scholar 

  17. H. M. Steele and R. P. Turco, “Retrieval of Aerosol Size Distributions from Satellite Extinction Spectra Using Constrained Linear Inversion,” J. Geophys. Res. D 102, 16 737–16 747 (1997).

    Google Scholar 

  18. M. E. Hervig and T. Deshler, “Stratospheric Aerosol Surface Area and Volume Inferred from HALOE, CLAES, and ILAS Measurements,” J. Geophys. Res.D 103, 25 345–25 352 (1998).

    Google Scholar 

  19. H. M. Steele, J. D. Lumpe, et al., “Retrieval of Aerosol Area and Volume Densities from Extinction Measurements: Application to POAM II and SAGE II,” J. Geophys. Res. D 104, 9325–9336 (1999).

    Article  Google Scholar 

  20. G. K. Yue, “A New Approach to Retrieval of Aerosol Size Distributions and Integral Properties from SAGE II Aerosol Extinction Spectra,” J. Geophys. Res. D 104, 27 491–27 506 (1999).

    Article  Google Scholar 

  21. M. Hervig and T. Deshler, “Evaluation of Aerosol Measurements from SAGE II, HALOE and Balloonborne Optical Particle Counters,” J. Geophys. Res. 107, D34031, doi: 1029/2001JD000703 (2002).

    Google Scholar 

  22. A. M. Chaika, Yu. M. Timofeev, A. V. Polyakov, et al., “Analysis of a Satellite Method of Determining the Microstructure of Stratospheric Aerosol,” Issled. Zemli Kosmosa, No. 3, 55–61 (2006).

  23. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Analysis of Solutions to the Inverse Problem on the Retrieval of the Microstructure of Stratospheric Aerosol from Satellite Measurements,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 816–829 (2006) [Izv., Atmos. Ocean. Phys. 42, 752–764 (2006)].

    Google Scholar 

  24. A. M. Chaika, Yu. M. Timofeev, and A. V. Polyakov, “Stratospheric Aerosol from the Data of SAGE III Measurements,” Issled. Zemli Kosmosa, No. 2, 10–18 (2007).

  25. W. P. Chu, C. R. Trepte, et al. “SAGE III Measurements,” Proc. SPIE Int. Soc. Opt. Eng. No. 481, 457–464 (2002).

  26. A. V. Polyakov, Yu. M. Timofeyev, et al., “Retrieval of Ozone and Nitrogen Dioxide Concentration from Stratospheric Aerosol and Gas Experiment III (SAGE III) Measurement Using a New Algorithm,” J. Geophys. Res. 110, D06303, doi: 10.1029/2004JD005060 (2005).

  27. A. V. Polyakov, Yu. M. Timofeev, D. V. Ionov, et al., “New Interpretation of Transmittance Measurements by the SAGE III Satellite Spectrometer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 410–422 (2005) [Izv., Atmos. Ocean. Phys. 41, 371–382 (2005)].

    Google Scholar 

  28. M. P. McCormick, H. M. Steele, et al., “Polar Stratospheric Cloud Sightings by SAM II,” J. Atmos. Sci. 39, 1387–1397 (1982).

    Article  Google Scholar 

  29. A. V. Polyakov, A. V. Vasil’ev, and Yu. M. Timofeev, “Parametrization of the Spectral Dependence of the Aerosol Extinction Coefficient in Problems of Atmospheric Occultation Sounding from Space,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37, 646–657 (2001) [Izv., Atmos. Ocean. Phys. 37, 599–609 (2001)].

    Google Scholar 

  30. Yu. M. Timofeyev, A. V. Polyakov, H. M. Steele, et al., “Optimal Eigenanalysis for the Treatment of Aerosols in the Retrieval of Atmospheric Composition from Transmission Measurements,” Appl. Opt. 42, 2635–2646 (2003).

    Article  Google Scholar 

  31. T. Deshler, M. E. Hervig, D. J. Hofmann, et al., “Thirty Years of in situ Stratospheric Aerosol Size Distribution Measurements from Laramie, Wyoming (41°N), Using Balloon-Borne Instruments,” J. Geophys. Res. 108 D54167, doi: 10.1029/2002JD002514 (2003).

  32. S. P. Smyshlyaev, V. L. Drosdov, et al., “A Two-Dimensional Model with Input Parameters from a General Circulation Model. Ozone Sensitivity to Different Formulations for Longitudinal Temperature Variation,” J. Geophys. Res. D 103, 28 373–28 387 (1998).

    Article  Google Scholar 

  33. S. P. Smyshlyaev, I. L. Karol’, V. A. Zubov, et al., “Two-Dimensional Simulation of Seasonal and Latitudinal Variations in the Total Atmospheric Ozone Content with the Use of Large-Scale Transport Parameters from an Atmospheric General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 81–94 (2002) [Izv., Atmos. Ocean. Phys. 38, 70–82 (2002)].

    Google Scholar 

  34. M. H. Hitchman, M. McCay, et al., “A Climatology of Stratospheric Aerosol,” J. Geophys. Res. D 99, 20 689–20 700 (1994).

    Article  Google Scholar 

  35. J. E. Barnes and D. J. Hofmann, “Lidar Measurements of Stratospheric Aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 24, 1923–1927 (1997).

    Article  Google Scholar 

  36. C. Timmreck, “Three-Dimensional Simulation of Stratospheric Background Aerosol: First Results of a Multiannual General Circulation Model Simulation,” J. Geophys. Res. D 106, 28 313–28 332 (2001).

    Article  Google Scholar 

  37. L. W. Thomason, L. R. Poole, and T. Deshler, “A Global Climatology of Stratospheric Aerosol Surface Area Density Deduced from Stratospheric Aerosol and Gas Experiment II Measurements: 1984–1994,” J. Geophys. Res. D 102, 8967–8976 (1997).

    Article  Google Scholar 

  38. C. Bingen, D. Fussen, and F. Vanhellemont, “A Global Climatology of Stratospheric Aerosol Size Distribution Parameters Derived from SAGE II Data over the Period 1984–2000: 1. Methodology and Climatological Observations,” J. Geophys. Res. 109, D06201, doi: 10.1029/2003JD003518 (2004).

  39. C. Bingen, D. Fussen, and F. Vanhellemont, “A Global Climatology of Stratospheric Aerosol Size Distribution Parameters Derived from SAGE II Data over the Period 1984–2000: 2. Reference Data,” J. Geophys. Res. 109, D06202, doi: 10.1029/JD003511 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Chayka.

Additional information

Original Russian Text © A.M. Chayka, Yu.M. Timofeyev, A.V. Polyakov, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 2, pp. 206–220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chayka, A.M., Timofeyev, Y.M. & Polyakov, A.V. Integral microphysical parameters of stratospheric background aerosol for 2002–2005 (the SAGE III satellite experiment). Izv. Atmos. Ocean. Phys. 44, 193–206 (2008). https://doi.org/10.1134/S0001433808020072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808020072

Keywords

Navigation