Skip to main content
Log in

Numerical simulation of convective clouds developing in the atmosphere in emergency situations (explosions, fires)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A numerical model is presented that allows an adequate description of the evolution of a liquiddroplet convective cloud developing under extreme conditions in the presence of high-power thermal sources on the land surface or in the atmosphere. The features of the life cycle and stages of clouds are studied on the basis of this model in relation to the distribution of environmental humidity and the time of action of a thermal source and its temperature and radius. It is shown that, owing to the action of an instantaneous energy source (an explosion), a convection flow develops in the form of a thermal, whereas a convection flow in the form of a jet develops above a long-acting energy source (fire). The features of the evolution and formation of precipitation in the clouds formed under the development of both convection forms are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Matveev, Course of General Meteorology: Atmospheric Physics (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  2. Yu. A. Izrael’, Peaceful Nuclear Explosions and the Environment (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  3. Yu. A. Dovgalyuk and L. S. Ivlev, Physics of Aqueous and Other Atmospheric Aerosols (Lening. Gos. Univ., Leningrad, 1998) [in Russian].

    Google Scholar 

  4. I. L. Karol’, Climatic Consequences of a Nuclear War (Znanie, Leningrad, 1987) [in Russian].

    Google Scholar 

  5. A. M. Grishin, Mathematical Modeling of Forest Fires and New Methods of Their Control (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  6. E. N. Stankova and M. A. Zatevakhin, “Investigation of Aerosol-Droplet Interaction in the Mature Convective Clouds Using the Two-Dimensional Model,” in Proceedings of 14th International Conference on Nucleation and Atmospheric Aerosols (Helsinki, 1996), pp. 901–904.

  7. E. L. Kogan, I. P. Mazin, B. N. Sergeev, and V. I. Khvorost’yanov, Numerical Simulation of Clouds (Gidrometeoizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  8. E. N. Stankova, Numerical Simulation of Convective Clouds Developing under Extreme Conditions, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics (GGO, St. Petersburg, 1994).

    Google Scholar 

  9. Yu. A. Dovgalyuk, M. A. Zatevakhin, and E. N. Stankova, “Numerical Simulation of Buoyant Thermal Using k-e Model,” J. Appl. Meteorol. 33, 1118–1126 (1994).

    Article  Google Scholar 

  10. M. A. Zatevakhin and E. N. Stankova, “Numerical Simulation of Dynamical and Microphysical Processes in Convective Clouds, Developing in Natural and Extreme Conditions,” in Proceedings of International Aerosol Conference on Physics of Atmospheric Aerosol (Moscow, 1999).

  11. E. N. Stankova and M. A. Zatevakhin, “Numerical Simulation of Cloud Dynamics and Microphysics,” in Proceedings of International Conference on Computational Science—ICCS 2003, Part 2; Lecture Notes in Computer Science (Springer, 2003), Vol. 2658, ISSN 0302-9743, ISBN 3-540-40195-4, pp. 171–178.

    Google Scholar 

  12. E. Stankova, “Numerical Simulation of Convective Clouds Developing in the Extreme Conditions,” in Proceedings of International Conference on Computational Science and Its Applications—ICCSA 2005 (Singapore, 2005).

  13. W. P. Jones and B. E. Launder, “The Calculation of Low Reynolds Number Phenomena with a Two Equation Model of Turbulence,” Int. J. Heat Mass Transfer 16, 1119–1130 (1973).

    Article  Google Scholar 

  14. E. Kessler, On the Distribution and Continuity of Water Substance in Atmospheric Circulation (Meteorology Monographs, Am. Meteorol. Soc., 1969), No. 32.

  15. K. G. Gainullin, M. A. Zatevakhin, V. N. Piskunov, et al., “Numerical Simulation of the Kinetics of Cumulus-Drop Spectrum Formation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 74–84 (2003) [Izv., Atmos. Ocean. Phys. 39, 65–74 (2003)].

    Google Scholar 

  16. S. M. Shmeter, Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  17. G. N. Abramovich, Theory of Turbulent Jets (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  18. V. Andreev and S. Panchev, Dynamics of Atmospheric Thermals (Gidrometeoizdat, Leningrad, 1975) [in Russian].

    Google Scholar 

  19. L. Machta, “Entrainment and the Maximum Height of an Atomic Cloud,” Bull. Am. Meteorol. Soc. 31(6), 215–216 (1950).

    Google Scholar 

  20. O. G. Sutton, “The Atom Bomb As an Experiment in Convection,” Weather 2(4), 20 (1947).

    Google Scholar 

  21. C. H. B. Priestley, “Turbulent Transfer in the Lower Atmosphere,” Aster. J. Phys. 6(3) (1953).

  22. A. T. Onufriev, “Theory of Motion of a Vortex Ring under the Action of Gravity: Rise of the Cloud of an Atomic Explosion,” Prikl. Mekh. Tekh. Fiz., No. 2, 3–15 (1967).

  23. J. Boussinesq, Theorio Analytique de la Chaleur (Gauthier-Villare, Paris, 1903), Vol. 2.

    Google Scholar 

  24. M. A. Zatevakhin, “Turbulent Thermal in a Humid Atmosphere,” High Temperature 39, 532–539 (2001).

    Article  Google Scholar 

  25. V. A. Andrushchenko, “Formation of a Ring Vortex during the Rise of a Heated Air Mass in a Stratified Atmosphere,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 186–189 (1978).

  26. V. A. Andrushchenko and A. A. Chudov, “Drift of Large-Scale Hot Thermals in Stratified Air Flows,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 144–151 (1984).

  27. V. A. Andrushchenko, Kh. S. Kestel’boim, and A. A. Chudov, “Gas Motion Due to a Point Explosion in the Atmosphere,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 123–130.

  28. G. M. Makhviladze, O. I. Melikhov, and S. E. Yakush, “Rise of a Turbulent Axisymmetric Thermal in an Inhomogeneous Compressible Atmosphere,” Prikl. Mekh. Tekh. Fiz., No. 1, 62–68 (1989).

  29. G. M. Makhviladze, O. I. Melikhov, and S. E. Yakush, “Numerical Simulation of the Rise of a Turbulent Thermal in an Inhomogeneous Compressible Atmosphere,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 72–80 (1989).

  30. G. M. Makhviladze and S. E. Yakush, “Transport of a Disperse Additive in the Atmosphere by a Rising Thermal,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza No. 1, 123–130 (1990).

  31. M. A. Zatevakhin and E. N. Stankova, “Monotonization of Finite-Difference Schemes of Numerical Solution of Hydrodynamic Equations,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 534, 73–86 (1991).

  32. B. M. Vorob’ev and G. V. Khotimskaya, “Numerical Simulation of Strongly Overheated Convection Flows in a Stratified Atmosphere,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 517, 116–123 (1988).

  33. B. M. Vorob’ev, “Calculation of Processes Proceeding in a Fine-Droplet Artificially Crystallized Convective Cloud,” Tr. Lening. Gos. Meteorol. Inst., No. 45, 108–116 (1972).

  34. V. G. Baranov, Yu. A. Dovgalyuk, and E. N. Stankova, “1.5-Dimensional Model of the Natural Evolution of a Convective Cloud and Actions on It,” in Proceedings of 1st All-Union Symposium on Mathematical Simulation of Atmospheric Convection and Artificial Actions on Convective Clouds (Dolgoprudnyi, Russia, 1984) (Gidrometizdat, Moscow, 1988) [in Russian].

  35. W. R. Cotton, “A Simulation of Cumulonimbus Responses to Large Fire Storm Implication to a Nuclear Winter,” Proceedings of the 9th International Conference on Cloud Physics (Valgius, Tallinn, 1984), Vol. 4, pp. 927–932.

    Google Scholar 

  36. F. Giorgi, “Two-Dimentional Simulations of Possible Mesoscale Effects of Nuclear Fires,” J. Geophys. Res. D 94, 1127–1165 (1989).

    Google Scholar 

  37. V. G. Gorshkov, K. Ya. Kondrat’ev, and K. S. Losev, “Global Ecological Prospects,” Vestn. Ross. Akad. Nauk, No. 5, 70–81 (1992).

  38. V. I. Polezhaev, “Numerical Study of the Natural Convection of Fluids and Gases,” in Some Applications of the Grid Method in Gas Dynamics (Mosk. Gos. Univ., Moscow, 1971), Issue 4, pp. 42–56 [in Russian].

    Google Scholar 

  39. Yu. A. Dovgalyuk, V. G. Baranov, and E. N. Stankova, “On the Possibility of Numerical Simulation of Action on Convective Clouds with a Nonstationary Model,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 482, 35–42 (1984).

  40. V. G. Baranov, N. E. Veremei, S. S. Vlasenko, and Yu. A. Dovgalyuk, “Numerical Nonstationary Model of a Convective Cloud Containing Solid Aerosol Particles,” Vestn. SPbGU,. Ser. 4 (Fiz. Khim.), No. 18, 23–30 (1997).

  41. R. Scorer, Environmental Aerodynamics (Ellis Horwood, New York, 1978; Mir, Moscow, 1980).

    Google Scholar 

  42. M. M. Bradley, “Numerical Simulation of Nucleation Scavenging within Smoke Plume above Large Fires,” in Proceedings of International Conference on Energy Transformation and Interaction with Small Mesoscale Atmospheric Processes (Lausanne, 1997), pp. 45–61.

  43. Yu. A. Dovgalyuk and E. N. Stankova, “Dynamic Aspect of the Life Stages of a Cumulus-Rain Cloud,” Tr. Vysokogorn. Geofiz. Inst., No. 76, 15–20 (1989).

  44. E. N. Stankova, “Numerical Simulation of Convective Clouds Developing under Extreme Conditions,” in Proceedings of Conference of Young Scientists and Specialists of the Voeikov Main Geophysical Observatory, (Leningrad, 1990), pp. 47–53 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.E. Veremei, Yu.A. Dovgalyuk, E.N. Stankova, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 6, pp. 792–806.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veremei, N.E., Dovgalyuk, Y.A. & Stankova, E.N. Numerical simulation of convective clouds developing in the atmosphere in emergency situations (explosions, fires). Izv. Atmos. Ocean. Phys. 43, 731–744 (2007). https://doi.org/10.1134/S0001433807060072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807060072

Keywords

Navigation