Skip to main content
Log in

Retrieval of total ozone in the mesosphere with a new model of electronic-vibrational kinetics of O3 and O2 photolysis products

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The paper presents a new model of electronic-vibrational kinetics of the products of ozone and molecular oxygen photodissociation in the terrestrial middle atmosphere. The model includes 45 excited states of the oxygen molecules O2(b 1, Σ + g ,v= 0−2), O2 (a 1Δ g , v= 0−5), and O2(X 3Σ g , v= 1−35) and of the metastable atom O (1 D) and over 100 aeronomic reactions. The model takes into account the dependence of quantum yields of the production of O2(a 1Δ g , v= 0−5) in a singlet channel of ozone photolysis in the Hartley band on the wavelength of photolytic emission. Taking account of the electronic-vibrational kinetics is important in retrieval of the vertical profiles of ozone concentration from measured intensities of the Atm and IR Atm emissions of the oxygen bands above 65 km and leads to an increase in the ozone concentration retrieved from the 1.27-µm emission, in contrast to the previous model of pure electronic kinetics. Sensitivity analysis of the new model is made for variations in the concentrations of atmospheric constituents ([O2], [N2], [O(3P)], [O3], [CO2]), the gas temperature, rate constants of the reactions, and quantum yields of the reaction products. A group of reactions that most strongly affect the uncertainty of ozone retrieval from measured intensities of atmospheric emissions of molecular oxygen O2(b 1Σ + g , v) and O2(a 1Δ g , v) has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Yankovsky and R. O. Manuilova, “New Self-Consistent Model of the Diurnal Emissions O2(a 1Δ g , v) and O2(b 1Σ + g , v) in the Middle Atmosphere: Retrieval of the Vertical Profile of Ozone from the Measured Profiles of the Intensity of These Emissions,” Opt. Atmos. Okeana 16, 582–586 (2003).

    Google Scholar 

  2. V. A. Yankovsky and R. O. Manuilova, “Model of Daytime Emissions of Electronically—Vibrationally Excited Products of O3 and O2 Photolysis: Application to Ozone Retrieval,” Ann. Geophys. 24, 2823–2839 (2006).

    Article  Google Scholar 

  3. L. E. Khvorostovskaya and V. A. Yankovsky, “On a Mechanism of Ozone Formation in Molecular-Oxygen Glow Discharge,” Opt. Spektrosk. 37(1), 26–30 (1974).

    Google Scholar 

  4. L. E. Khvorostovskaya and V. A. Yankovsky, “Experimental Study of Processes with Participation of Metastable Atoms and Molecules in Oxygen Glow Discharge,” Khim. Fiz. 3, 1561–1572 (1984).

    Google Scholar 

  5. L. E. Khvorostovskaya and V. A. Yankovsky, “Negative Ions, Ozone and Metastable Components in DC Oxygen Glow Discharge,” Contr. Plasm. Phys. 31, 71–88 (1991).

    Article  Google Scholar 

  6. V. A. Yankovsky, “Electronic—Vibrational Relaxation of O2(b 1Σ + g , v = 1, 2) Molecules in Collisions with Ozone and with Oxygen Molecules and Atoms,” Khim. Fiz. 10, 291–306 (1991).

    Google Scholar 

  7. T. G. Slanger and R. A. Copeland, “Energetic Oxygen in the Upper Atmosphere and the Laboratory,” Chem. Rev. 103, 4731–4765 (2003).

    Article  Google Scholar 

  8. D. A. Pejakovic, E. R. Wouters, K. E. Phillips, et al., “Collisional Removal of by O2 at Thermospheric Temperatures,” J. Geophys. Res. A 110, 03308, doi: 10.1029/2004JA010860 (2005).

  9. W. B. DeMore, D. M. Golden, R. F. Hampson, et al., “Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling,” JPL Publ. 97-4, 1–128 (1997).

    Google Scholar 

  10. M. G. Mlynczak, F. Morgan, and J.-H. Yee, “Simultaneous Measurements of the O2(a 1Δ g , v) and O2(b 1Σ + g ) Airglows and Ozone in the Daytime Mesosphere,” Geophys. Rev. Lett. 28, 999–1002 (2001).

    Article  Google Scholar 

  11. M. G. Mlynczak, S. C. Solomon, and D. S. Zaras, “An Updated Model for O2(a 1Δ g ) Concentrations in the Mesosphere and Lower Mesosphere and Implications for Remote Sensing of Ozone at 1.27 µm,” J. Geophys. Res. D 98, 18 639–18 648 (1993).

    Google Scholar 

  12. R. Atkinson, D. L. Baulch, R. A. Cox, et al., “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry Supplement VI. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 26, 1329–1497 (1997).

    Article  Google Scholar 

  13. W. K. Tobiska, T. Woods, F. Eparvier, et al., “The SOLAR2000 Empirical Solar Irradiance Model and Forecast Tool,” J. Atmos. Solar Terr. Phys 62, 1233–1250 (2000).

    Article  Google Scholar 

  14. W. K. Tobiska and S. D. Bouwer, “New Developments in SOLAR2000 for Space Research and Operations,” Adv. Space Res. 37, 347–358 (2006).

    Article  Google Scholar 

  15. K. Yoshino, W. H. Parkinson, K. Itob, et al., “Absolute Absorption Cross Section Measurements of Schumann-Runge Continuum of O2 at 90 and 295 K,” J. Mol. Spectrosc. 229, 238–243, doi: 10.1016/j.jms.2004.08.020 (2004).

    Article  Google Scholar 

  16. S. P. Sander, R. R. Friedl, A. R. Ravishankara, et al., “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,” JPL Publ. 02-25, Evaluation Number 14 (2003).

  17. G. Kockarts, “Penetration of Solar Radiation in the Schumann-Runge Bands of Molecular Oxygen: A Robust Approximation,” Ann. Geophys. 12, 1207–1217(1994).

    Google Scholar 

  18. T. Reddmann and R. Uhl, “The H Lyman-α Actinic Flux in the Middle Atmosphere,” Atmos. Chem. Phys. 3, 225–231 (2003).

    Article  Google Scholar 

  19. Atmospheric Ozone 1985—Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, WMO Global Ozone Research Monitoring Project Report No. 16 (WMO, Geneva, 1986).

  20. E. J. Llewellyn and I. C. McDade, “A Reference Model for Atomic Oxygen in the Terrestrial Atmosphere,” Adv. Space Res. 18(9/10), 209–226 (1996).

    Article  Google Scholar 

  21. R. Rodrigo, J. J. López-Moreno, M. López-Puertas, et al., Neutral Atmospheric Composition between 60 and 220 km: A Theoretical Model for Mid-Latitudes,” Planet. Space Sci. 34, 723–743 (1986).

    Article  Google Scholar 

  22. G. M. Keating and C. Chen, “Extensions to the CIRA Reference Models for Middle Atmosphere Ozone,” Adv. Spane Res. 13, 45–54 (1993).

    Article  Google Scholar 

  23. A. E. Hedin, “Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere,” J. Geophys. Res. A 96, 1159–1172 (1991).

    Article  Google Scholar 

  24. V. A. Yankovsky and V. A. Kuleshova, “Photodissociation of Ozone in the Hartley Band: Analytic Description of O2(a 1Δ g , v = 0−3) Quantum Yields Depending on the Wavelength,” Opt. Atmos. Okeana 19, 576–580 (2006).

    Google Scholar 

  25. S. M. Dylewski, J. D. Geiser, and P. L. Houston, “The Energy Distribution, Angular Distribution, and Alignment of theO(1 D 2) Fragment from the Photodissociation of Ozone between 235 and 305 nm,” J. Chem. Phys. 115,7460–7473 (2001).

    Article  Google Scholar 

  26. I. V. Olemskoi, “Modification of an Algorithm of Extracting Structural Features,” Vestn. SPbGU, ser. 10, issue 2, 46–55 (2006).

  27. V. A. Yankovsky, R. O. Manuilova, and V. A. Kuleshova, “Heating of the Middle Atmosphere As a Result of Quenching of the Products of O2 and O3 Photodissociation,” Proc. SPIE—Int. Soc. Opt. Eng. 5743, 34–40(2004).

    Google Scholar 

  28. J. J. Tansock, S. Hansen, and K. Paskett, “SABER Ground Calibration,” J. Remote Sensing 24, 403–420(2003).

    Article  Google Scholar 

  29. M. G. Mlynczak and D. K. Zhou, “Kinetic and Spectroscopic Requirements for the Measurement of Mesospheric Ozone at 9.6 µm under Non-LTE Conditions,” Geophys. Rev. Lett. 25, 639–642 (1998).

    Article  Google Scholar 

  30. F. Menard-Bourcin, L. Doyennete, and J. Menard, “Vibrational Energy Transfers in Ozone from Infrared Double-Resonance Measurements,” J. Chem. Phys. 92, 4212–4221 (1990).

    Article  Google Scholar 

  31. F. Menard-Bourcin, L. Doyennete, and J. Menard, “Vibrational Energy Transfers in Ozone Excited Into the (101) State from Double-Resonance Measurements,” J. Chem. Phys. 101, 8636–8645 (1994).

    Article  Google Scholar 

  32. J. A. Joens, J. B. Burkholder, and E. J. Bair, “Vibrational Relaxation in Ozone Recombination,” J. Chem. Phys. 76, 5902–5916 (1982).

    Article  Google Scholar 

  33. M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Science Publ., Singapore, 2001).

    Google Scholar 

  34. R. O. Manuilova and G. M. Shved, “The 4.8 and 9.6 µm Ozone Band Emissions in the Middle Atmosphere,” J. Atmos. Terr. Phys. 54, 1149–1168 (1992).

    Article  Google Scholar 

  35. R. O. Manuilova, O. A. Gusev, A. A. Kutepov, et al., “Modelling of Non-LTE Limb Spectra of IR Ozone Bands for the MIPAS Space Experiment,” J. Quant. Spectrosc. Radiat. Transfer 59, 405–422 (1998).

    Article  Google Scholar 

  36. M. Kaufmann, O. A. Gusev, and K. U. Grossmann, “Satellite Observations of Day-and Nighttime Ozone in the Mesosphere and Lower Thermosphere,” J. Geophys. Res. D 108, 4272–4286 (2002).

    Article  Google Scholar 

  37. S. Gil-López, M. López-Puertas, M. Kaufmann, et al., “Retrieval of Stratospheric and Mesospheric O3 from High Resolution MIPAS Spectra at 15 and 10 μm,” Advances Space Res. 36, 943–951 (2005).

    Article  Google Scholar 

  38. M. Kaufmann, S. Gil-López, M. López-Puertas, et al., “Vibrationally Excited Ozone in the Middle Atmosphere,” J. Atmos. Solar-Terr. Phys. 68, 202–212 (2006).

    Article  Google Scholar 

  39. V. A. Kuleshova and V. A. Yankovsky, “Model of Electronic—Vibrational Kinetics of O2 and O3 Photolysis in the Earth’s Middle Atmosphere: Analysis of Sensitivity,” Opt. Atmos. Okeana 20 (in press).

  40. G. E. Streit, C. J. Howard, A. L. Schmeltekopf, et al., “Temperature Dependence of O(1 D) Rate Constants for Reactions with O2, N2, CO2, O3, H2O,” J. Chem. Phys. 65, 4761–4764 (1976).

    Article  Google Scholar 

  41. M. Braithwaite, J. A. Davidson, and E. A. Ogryzlo, “O2(b 1Σ + g ) Relaxation in Collisions. I. The Influence of Long Range Forces in the Quenching by Diatomic Molecules,” J. Chem. Phys. 65, 771–778 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Yankovsky.

Additional information

Original Russian Text © V.A. Yankovsky, V.A. Kuleshov, R.O. Manuilova, A.O. Semenov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 557–569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yankovsky, V.A., Kuleshova, V.A., Manuilova, R.O. et al. Retrieval of total ozone in the mesosphere with a new model of electronic-vibrational kinetics of O3 and O2 photolysis products. Izv. Atmos. Ocean. Phys. 43, 514–525 (2007). https://doi.org/10.1134/S0001433807040135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040135

Keywords

Navigation