Skip to main content
Log in

NO2 content variations near St. Petersburg as inferred from ground-based and satellite measurements of scattered solar radiation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An automatic spectral complex developed at the Institute of Physics, St. Petersburg State University, is described. This complex is used for regular ground-based spectroscopic measurements of the total NO2 content in the vertical column of the atmosphere during the twilight and daylight hours of the day near St. Petersburg (Petrodvorets). In 2004–2006, a number of ground-based twilight measurements of the total NO2 content were obtained near St. Petersburg, and variations in the NO2 content in the troposphere were estimated from the results of daytime ground-based measurements. An example of the spatial annual mean distribution of the NO2 content (central and northern Europe, northwestern Russia) based on the data of satellite measurements over the period 2003–2005 is presented. This example demonstrates the main sources of anthropogenic pollution. An increase in the mean annual contents of tropospheric NO2 near Moscow and St. Petersburg is preliminarily estimated for the entire period of satellite observations with the GOME instrument at about 30–40% over ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Karol’, V. V. Rozanov, and Yu. M. Timofeev, Gas Admixtures in the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  2. “Scientific Assessment of Ozone Depletion: 1994,” WMO Report No. 37, 1995.

  3. “Scientific Assessment of Ozone Depletion: 1998,” WMO Report No. 44, 1999.

  4. “Scientific Assessment of Ozone Depletion: 2002,” WMO Report No. 47, 2003.

  5. “WMO Global Atmosphere Watch, Report on a Strategy for Integrating Satellite and Ground-Based Observations of Ozone,” WMO/CEOS Report No. 140, 2001.

  6. J. P. Burrows, et al., “The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results,” J. Atmos. Sci. 56, 151–175 (1999).

    Article  Google Scholar 

  7. H. Bovensmann, et al., “SCIAMACHY-Mission Objectives and Measurement Modes,” J. Atmos. Sci. 56, 127–150 (1999).

    Article  Google Scholar 

  8. S. P. Ahmad, P. F. Levelt, P. K. Bhartia, et al., “Atmospheric Products from the Ozone Monitoring Instrument (OMI),” in Proceedings of SPIE Conference on Earth Observing Systems VIII (San Diego, 2003).

  9. D. Ionov, F. Goutail, J.-P. Pommereau, et al., “Ten Years of NO2 Comparisons between Ground-Based SAOZ and Satellite Instruments (GOME, SCIAMACHY, OMI),” in Proceedings of Atmospheric Science Conference, ESRIN (Frascati, Italy, 2006), ESA-SP-628.

    Google Scholar 

  10. D. J. Hoffman, et al., “Intercomparison of UV/Visible Spectrometers for Measurements of Stratospheric NO2 for the Network for the Detection of Stratospheric Changes,” J. Geophys. Res. D 100, 16 765–16 791 (1995).

    Google Scholar 

  11. G. Vaughan, et al., “An Intercomparison of Ground-Based UV-Visible Sensors of Ozone and NO2,” J. Geophys. Res. D 102, 1411–1422 (1997).

    Article  Google Scholar 

  12. H. K. Roscoe, et al., “Slant Column Measurements of O3 and NO2 during the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996,” J. Atmos. Chem. 32, 281–314 (1999).

    Article  Google Scholar 

  13. A. C. Vandaele et al., “An Intercomparison Campaign of Ground-Based UV-Visible Measurements of NO2, BrO, and OClO Slant Columns. Methods of Analysis and Results for NO2,” J. Geophys. Res. D 110, 1–24 (2005).

    Article  Google Scholar 

  14. A. S. Elokhov and A. N. Gruzdev, “Nitrogen Dioxide Column Content and Vertical Profile Measurements at the Zvenigorod Research Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 831–846 (2000) [Izv., Atmos. Ocean. Phys. 36, 763–777 (2000)].

    Google Scholar 

  15. S. M. Khaikin, D. V. Ignat’ev, V. M. Dorokhov, et al., “Studies of the Effect of Geophysical Factors on O3 and NO2 measurements with the GOME Satellite Instrument: Comparisons with Ground-Based Measurements with the SAOZ Instrument in Polar Latitudes,” Issled. Zemli Kosmosa, No. 3, 1–11 (2003).

  16. V. P. Sinyakov and L. A. Spektorov, “Ozone and Nitrogen Dioxide Contents in the Atmosphere of the Northern Tian Shan,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 23, 20–25 (1987).

    Google Scholar 

  17. D. V. Ionov, V. P. Sinyakov, and V. K. Semenov, “Validation of GOME (ERS-2) NO2 Vertical Column Data with Ground-Based Measurements at Issyk-Kul (Kyrgyzstan),” Adv. Space Res. 37, 2254–2260 (2006).

    Article  Google Scholar 

  18. U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, Ed. by M. Sigrist (Wiley, 1994), pp. 27–84.

  19. C. Fayt and M. Van Roozendael, WINDOAS User Manual (Belgium Inst. for Space Aeronomy, Brussels, 2001).

    Google Scholar 

  20. A. Richter, et al., “A Scientific NO2 Product from SCIAMACHY: First Results and Validation,” in Proceedings of 2nd Workshop on the Atmospheric Chemistry Validation of Envisat (ACVE-2), ESA/ESRIN, Italy (2004), ESA SP-262.

    Google Scholar 

  21. J.-C. Lambert, et al., “Ground-Based Comparisons of Early SCIAMACHY O3 and NO2 Columns,” Proceedings of 1st Envisat Validation Workshop, ESA/ESRIN, Italy (2003), ESA SP-531.

    Google Scholar 

  22. A. Richter, J. P. Burrows, N. Hendrik, et al., “Increase in Tropospheric Nitrogen Dioxide over China Observed from Space,” Nature 437(7055), 129–132 (2005).

    Article  Google Scholar 

  23. A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME Measurements,” Adv. Space Res. 29, 1673–1683 (2002).

    Article  Google Scholar 

  24. D. A. Golubev and N. D. Sorokin, Environmental Protection, Nature Management, and Environmental Safety in St. Petersburg in 2004 (OOO “Sezam-Print”, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  25. K. Bogumil, J. Orphal, and J. P. Burrows, “Temperature-Dependent Absorption Cross-Sections of O3, NO2, and Other Atmospheric Trace Gases Measured with the SCIAMACHY Spectrometer,” in Proceedings of ERSENVISAT Symposium: Looking down to Earth in the New Millenium (ESA, Gothenburg, 2000).

    Google Scholar 

  26. A. C. Vandaele, C. Hermans, P. C. Simon, et al., “Measurements of the NO2 Absorption Cross-Section from 42000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59(3–5), 171–184 (1998).

    Article  Google Scholar 

  27. L. S. Rothman, et al., “The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82(1–4), 5–44 (2003).

    Article  Google Scholar 

  28. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, et al., “Absorption Measurements of Oxygen between 330 and 1140 nm,” J. Geophys. Res. D 95, 18 577–18 582 (1990).

    Google Scholar 

  29. K. Chance and R. J. D. Spurr, “Ring Effect Studies: Rayleigh Scattering, Including Molecular Parameters for Rotational Raman Scattering and the Fraunhofer Spectrum,” Appl. Opt. 36, 5224–5230 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ionov.

Additional information

Original Russian Text © A.V. Poberovskii, A.V. Shashkin, D.V. Ionov, Yu.M. Timofeev, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 547–556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poberovskii, A.V., Shashkin, A.V., Ionov, D.V. et al. NO2 content variations near St. Petersburg as inferred from ground-based and satellite measurements of scattered solar radiation. Izv. Atmos. Ocean. Phys. 43, 505–513 (2007). https://doi.org/10.1134/S0001433807040123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040123

Keywords

Navigation