Skip to main content
Log in

Carbon dioxide content in the atmospheric thickness over central Eurasia (Issyk Kul Monitoring Station)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The refined data obtained from the spectroscopic measurements of carbon dioxide in the column of the continental atmosphere over the Issyk Kul Monitoring Station during the period 1980–2006 and the results of their comparison with the data obtained from the measurements of carbon dioxide in air samples and with the mean zonal empirical model of the Climate Monitoring and Diagnostics Laboratory (CMDL) are given. Seasonal variations and a long-term trend of carbon dioxide concentration in the atmospheric thickness over a 25-year period of measurements are analyzed. The monthly mean concentration of CO2 is increased by ∼40.5 ppm, and the linear-trend index is 1.62 ppm per year. The results of the aircraft measurements of CO2 concentration in air samples are, on the average, in agreement with the data obtained from the spectroscopic measurements of carbon dioxide concentration in the atmospheric column. The CO2 concentration in the surface air varies from day to day, and only its minimum values coincide with the CO2 concentration in the atmospheric thickness. The results of measurements of CO2 concentration in the atmospheric thickness and in the atmospheric surface layer over the KZD and KZM stations nearest to each other are, on the whole, in disagreement; moreover, the KZD and KZM data are inconsistent. The CO2 concentration in the atmospheric thickness is, on the average, 1–2% higher than that obtained with the CMDL model for 42.6° N latitude. The coefficient of correlation between the measurement results and model data is high (r= 0.95).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Conway, A. E. Andrews, L. Bruhweler, et al., “2. Carbon Cycle Greenhouse Gases,” in Climate Monitoring and Diagnostics Laboratory Summary Report No. 27, 2002–2003, Ed. by R. C. Schnell (NOAA Ocean and Atmospheric Research, Boulder, 2004).

    Google Scholar 

  2. W. D. Komhyr, L. S. Waterman, and W. R. Taylor, “Semiautomatic Nondispersive Infrared Analyzer Apparatus for CO2 Air Sample Analyses,” J. Geophys. Res. C 88, 1315–1329 (1983).

    Google Scholar 

  3. K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric Carbon Dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res. D 94, 8549–8565 (1989).

    Google Scholar 

  4. F. E. Fowle, “The Spectroscopic Determination of Aqueous Vapor,” Astrophys. J. 35(3), 149–162 (1912).

    Article  Google Scholar 

  5. A. Adel, “On the Continuous Spectrum of Stars with Extended Atmospheres,” Astrophys. J. 90(4), 627–629 (1939).

    Article  Google Scholar 

  6. M. V. Migeotte, “The Fundamental Band of Carbon Monoxide at 4.7 mm in the Solar Spectrum,” Phys. Rev. 75, 1108–1109 (1949).

    Article  Google Scholar 

  7. A. M. Brounshtein, N. N. Paramonova, A. D. Frolov, and A. A. Shashkov, “Optical Method of Determining the Total Content of CO2 in a Vertical Atmospheric Column,” Tr. GGO, No. 369, 5–24 (1976).

  8. V. I. Dianov-Klokov, “Spectroscopic Studies of the Background Content of Gas Admixtures in the Atmosphere,” Vestn. Akad. Nauk SSSR, No. 4, 33–41 (1980).

  9. C. P. Rinsland, A. Goldman, F. J. Murcray, et al., “Infrared Measurements of Increased CF CL (CFC-12) Absorption above the South Pole,” Appl. Opt. 27, 627–630 (1988).

    Article  Google Scholar 

  10. WMO WDCGG Data Summary, WDCGG No. 29, GAW Data, Vol. IV, Greenhouse Gases and Other Atmospheric Gases (JMA-WMO, 2005).

  11. R. M. Akimenko, V. N. Aref’ev, L. L. Brizhanskaya, et al., “Study of Carbon Dioxide in the Atmosphere,” Opt. Atmos. 1(9), 49–53 (1988).

    Google Scholar 

  12. V. N. Aref’ev, F. V. Kashin, and N. E. Kamenogradskii, “Systematic Measurements of the Concentration of Carbon Dioxide in the Atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26, 584–593 (1990).

    Google Scholar 

  13. V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, and V. K. Semenov, “Changes in the Growth Rate of the Atmospheric Carbon Dioxide Concentration from Measurements over Lake Issyk Kul,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32, 437–439 (1996) [Izv., Atmos. Ocean. Phys. 32, 401–402 (1996)].

    Google Scholar 

  14. F. V. Kashin, V. N. Aref’ev, K. N. Visheratin, et al., “Results of Experimental Studies of Radiatively Active Atmospheric Constituents in Central Eurasia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 463–492 (2000) [Izv., Atmos. Ocean. Phys. 36, 425–453 (2006)].

    Google Scholar 

  15. L. Wallace and W. Livingston, “Spectroscopic Observations of Atmospheric Trace Gases over Kitt Peak: 1. Carbon Dioxide and Methane from 1979 to 1985,” J. Geophys. Res. D 95, 9823–9827 (1990).

    Google Scholar 

  16. J. Notholt, G. C. Toon, C. P. Rinsland, et al., “Latitudinal Variations of Trace Gas Concentrations in the Free Troposphere Measured by Solar Absorption Spectroscopy During a Ship Cruise,” J. Geophys. Res. D 105, 1337–1350 (2000).

    Article  Google Scholar 

  17. M. Buchwitz, V. V. Rozanov, and J. P. Burrows, “A Near-Infrared Optimized DOAS Method for the Fast Global Retrieval of Atmospheric CH4, CO, CO2, H2O and N2O Total Column Amounts from SCIAMACHY Envisat 1 Nadir Radiances,” J. Geophys. Res. D 105, 15231–15245 (2000).

    Article  Google Scholar 

  18. B. T. Tolton and D. Plloufe, “Sensitive of Radiometric Measurements of the Atmospheric Column from Space,” Appl. Opt. 40, 1305–1313 (2001).

    Article  Google Scholar 

  19. D. M. O’Brien and P. J. Rayner, “Global Observations of the Carbon Budget: 2. CO2 Column from Differential Absorption of Reflected Sunlight in the 1.61 µm Band of CO2,” J. Geophys. Res. 107(D18), 4354, doi: 10.1029/2001JD00617 (2002).

    Article  Google Scholar 

  20. Z. G. Yang, C. Toon, J. S. Margolis, et al., “Atmospheric CO2 Retrieved from Ground-Based near IR Solar Spectra,” Geophys. Res. Lett. 29(9), doi. 10.1029/2001GLO14357 (2002).

  21. M. J. Christi and G. L. Stephens, “Retrieving Profiles of Atmospheric CO2 in Clear Sky and in the Presence of Thin Cloud Using Spectroscopy from the Near and Thermal Infrared: A Preliminary Case Study,” J. Geophys. Res. 109, D04316, doi: 10.1029/2003JD004058 (2004).

  22. E. Dufour, F-M. Breon, and P. Peylin, “CO2 Column Averaged Mixing Ratio from Inversion of Ground-Based Solar Spectra,” J. Geophys. Res. 109, D09304, D09304, doi: 10.1029/2003JD004469 (2004).

  23. J. Notholt, G. C. Toon, E. Stordal, S. Solberg, et al., “Seasonal Variations of Atmospheric Trace Gases in High Arctic at 79° N,” J. Geophys. Res. D 102, 12 855–12 861 (1997).

    Google Scholar 

  24. T. Warneke, Z. Yang, S. Olsen, et al., “Seasonal and Latitudinal Variations of Column Averaged Volume Mixing Ratios of Atmospheric CO2,” Geophys. Res. Lett. 32, 103808, doi: 10.1029/2004GL021597 (2005).

  25. M. Schmidt, R. Graul, H. Sartorius, et al., “The Schauinsland CO2 Record: 30 Years of Continental Observations and Their Implications for the Variability of the European CO2 Budget,” J. Geophys. Res. 108, D194619, doi: 10.1029/2002JD003085 (2003).

  26. M. Tanaka, T. Nakazawa, and S. Aoki, “Time and Space Variations of Tropospheric Carbon Dioxide over Japan,” Tellus B, No. 39, 3–12 (1987).

  27. S. C. Olsen and J. T. Randerson, “Differences between Surface and Column Atmospheric CO2 and Implications for Carbon Cycle Research,” J. Geophys. Res. 109, D02301, doi: 10.1029/2003JD003968 (2004).

  28. B. Bolin and C. D. Keeling, “Large-Scale Atmospheric Mixing As Deduced from the Seasonal and Meridional Variations of Carbon Dioxide,” J. Geophys. Res. D 68, 3899–3920 (1963).

    Google Scholar 

  29. W. S. Cleveland, A. E. Freeny, and E. Greadel, “The Seasonal Component of Atmospheric CO2: Information from New Approaches to the Decomposition of Seasonal Time Series,” J. Geophys. Res. D 88, 10934–10946 (1983).

    Google Scholar 

  30. M. Heimann and C. D. Keeling, “Meridional Eddy Diffusion Model of the Transport of Atmospheric Carbon Dioxide. 1. Seasonal Carbon Cycle over the Tropical Pacific Ocean,” J. Geophys. Res. D 91, 7765–7781 (1986).

    Google Scholar 

  31. T. J. Conway, P. P. Tans, L. S. Waterman, et al., “Evidence for Interannual Variability of the Carbon Cycle from the National Oceanic and Atmospheric Administration / Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network,” J. Geophys. Res. D 99, 22831–22855 (1994).

    Article  Google Scholar 

  32. GLOBALVIEW-CO2, 2005. Cooperative Atmospheric Data Project—Carbon Dioxide NOAA/CMDL. ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW/ref_mbl_mtx_CO2.

  33. T. Nakazawa, S. Sugawara, G. Inoue, et al., “Aircraft Measurements of the Concentrations of CO2, CH4, N2 and CO and the Carbon and Oxygen Isotopic Ratios of CO2 in the Troposphere over Russia,” J. Geophys. Res. D 102, 3843–3859 (1997).

    Article  Google Scholar 

  34. K. V. Kazakova, N. E. Kamenogradskii, F. V. Kashin, et al., “Measurements of the Carbon Dioxide Concentration in the Atmosphere in the Region of Lake Issyk Kul,” Tr. IEM, No. 19(125), 58–65 (1987).

    Google Scholar 

  35. N. E. Kamenogradskii and F. V. Kashin, “Measurements of the Carbon Dioxide Concentration within the Atmosphere with the Use of the Spectroscopic Method and in Air Samples at Different Altitudes,” Tr. IEM, No. 23(146) (1992).

  36. A. M. Brounshtein, E. I. Faber, and A. A. Shashkov, “Gas Analytic Facility for Monitoring CO2 in Atmospheric Air,” Tr. GGO, No. 472, 11–18 (1984).

  37. C. D. Keeling, T. B. Harris, and E. M. Wilkins, “Concentration of Atmospheric Carbon Dioxide at 500 and 700 millibars,” J. Geophys. Res. D 73, 4511–4528 (1968).

    Google Scholar 

  38. M. Tanaka, M. T. Nakazawa, and S. Aoki, “Concentration of Atmospheric Carbon Dioxide over Japan,” J. Geophys. Res. C 88, 1339–1344 (1983).

    Google Scholar 

  39. G. I. Pearman and D. J. Beardsmore, “Atmospheric Carbon Dioxide Measurements in the Australian Region: Ten Years of Aircraft Data,” Tellus B 1(36), 1–24 (1984).

    Article  Google Scholar 

  40. S.-M. Fan, S. C. Wofsy, P. S. Bakman, et al., “Atmosphere-Biosphere Exchange of CO2 and O3 in Central Amazon Forest,” J. Geophys. Res. D 95, 16 851–16 864 (1990).

    Google Scholar 

  41. W. W. Chou, S. C. Wofsy, R. C. Harriss, et al., “Net Fluxes of CO2 in Amazonia Derived from Aircraft Observations,” J. Geophys. Res. D 107, D224614, doi: 10.1029/2001JD001295 (2002).

  42. I. Levin, P. Ciais, R. Langenfelds, et al., “Three Years of Trace Gas Observations over the EuroSiberian Domain Derived from Aircraft Sampling—a Concerted Action,” Tellus B, No. 54, 696–712 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Aref’ev.

Additional information

Original Russian Text © F.V. Kashin, V.N. Aref’ev, N.E. Kamenogradskii, V.K. Semenov, V.P. Sinyakov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 521–530.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashin, F.V., Aref’ev, V.N., Kamenogradskii, N.E. et al. Carbon dioxide content in the atmospheric thickness over central Eurasia (Issyk Kul Monitoring Station). Izv. Atmos. Ocean. Phys. 43, 480–489 (2007). https://doi.org/10.1134/S0001433807040093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040093

Keywords

Navigation