Skip to main content
Log in

Interannual variations and trends in zonal mean series of total ozone, temperature, and zonal wind

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ya. Kondrat’ev and K. S. Demirchyan, “Earth’s Climate and Kyoto Protocol,” Vestn. Akad. Nauk 71, 1002–1009 (2001).

    Google Scholar 

  2. “WMO, 2003: Scientific Assessment of Ozone Depletion: 2002,” Global Ozone Research and Monitoring Project, Report No. 47 (Geneva, 2003).

  3. G. C. Reinsel, A. J. Miller, E. C. Weatherhead, et al., “On Detection of Turnaround and Recovery in Trend for Ozone,” J. Geophys. Res. 110, doi: 10.1029/2004JD004662 (2005).

  4. J. Staehelin, N. R. P. Harris, C. Appenzeller, and J. Eberhard, “Ozone Trends: A Review,” Rev. Geophys. 39, 231–290 (2001).

    Article  Google Scholar 

  5. W. Steinbrecht, B. Hassler, H. Claude, et al., “Global Distribution of Total Ozone and Lower Stratospheric Temperature Variations,” Atmos. Chem. Phys. 3, 1421–1438 (2003).

    Google Scholar 

  6. C. G. Wellemeyer, P. K. Bhartia, R. D. McPeters, et al., “A New Release of Data from the Total Ozone Mapping Spectrometer (TOMS),” SPARC Newsletter, No. 22, 12–14 (2004).

  7. P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 Algorithm, //http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf.

  8. J. R. Ziemke, S. Chandra, and P. K. Bhartia, “A 25-Year Data Record of Atmospheric Ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS) Cloud Slicing: Implications for Ozone Trends in the Stratosphere and Troposphere,” J. Geophys. Res. 110, doi: 10.1029/2004JD005687 (2005).

  9. S. Dhomse, M. Weber, I. Wohltmann, et al., “On the Possible Causes of Recent Increases in Northern Hemispheric Total Ozone from a Statistical Analysis of Satellite Data from 1979 to 2003,” Atmos. Chem. Phys. 6, 1165–1180 (2006).

    Google Scholar 

  10. D. Brunner, J. Staehelin, J. A. Maeder, et al., “Variability and Trends in Total and Vertically Resolved Stratospheric Ozone Based on the CATO Ozone Data Set,” Atmos. Chem. Phys. 6, 4985–5008 (2006).

    Google Scholar 

  11. R. S. Stolarski and S. M. Frith, “Search for Evidence of Trend Slow-Down in the Long-Term TOMS/SBUV Total Ozone Data Record: The Importance of Instrument Drift Uncertainty,” Atmos. Chem. Phys. 6, 4057–4065 (2006).

    Google Scholar 

  12. K. N. Visheratin, “Main Characteristics of the TO Global Field on the Basis of Comparison of Versions 7 and 8 of the TOMS Data,” in Current Problems of Remote Sensing of the Earth from Space (IKI RAN, Moscow, 2006) [in Russian].

    Google Scholar 

  13. V. Ramaswamy, M. E. Gelman, M. D. Schwarzkopf, and J. R. Lin, “An Update of Stratospheric Temperature Trends,” SPARC Newsletter, No. 18, 7–9 (2002).

  14. V. Ramaswamy, M. D. Schwarzkopf, W. J. Randel, et al., “Anthropogenic and Natural Influences in the Evolution of Lower Stratospheric Cooling,” Science 311, 1138–1141 (2006).

    Article  Google Scholar 

  15. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, et al., “The Quasi-Biennial Oscillation,” Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  16. A. N. Gruzdev and V. A. Bezverkhnii, “Quasi-Biennial Variations in Ozone and Meteorological Parameters over Western Europe from Ozonesonde Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 224–236 (2006) [Izv., Atmos. Ocean. Phys. 42, 203–214 (2006)].

    Google Scholar 

  17. S. A. Sitnov, “QBO Effects Manifesting in Ozone, Temperature, and Wind Profiles,” Ann. Geophys. 22, 1495–1512 (2004).

    Article  Google Scholar 

  18. K. N. Visheratin and M. M. Troyanov, “Global Distribution of the TO Main Spectral Harmonic from Data of Satellite Measurements (TOMS),” in Current Problems of Remote Sensing of the Earth from Space (IKI RAN, Moscow, 2006), pp. 276–284 [in Russian].

    Google Scholar 

  19. A. M. Zvyagintsev, N. E. Kadygrov, and G. M. Kruchenitskii, “Analysis of Time Series of Total Ozone from Data of Satellite Observations,” Issled. Zemli Kosmosa, No. 4, 29–37 (2003).

  20. NASA Goddard Space Flight Center, http://toms.gsfc.nasa.gov.

  21. http://hyperion.gsfc.nasa.gov/Data_services/merged

  22. NCEP/DOE AMIP-II Reanalysis (Reanalysis-2 Pressure Level), http://nomad3.ncep.noaa.gov/ncep_data/index.html.

  23. A. R. Hansen and A. Sutera, “On the Probability Density Distribution of Planetary-Scale Atmospheric Wave Amplitude,” J. Atmos. Sci. 43, 3250–3265 (1986).

    Article  Google Scholar 

  24. J. D. Scargle, “Studies in Astronomical Time Series Analysis. 2. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data,” Astrophys. J. 263, 835–853 (1982).

    Article  Google Scholar 

  25. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1971; Mir, Moscow, 1974).

    Google Scholar 

  26. D. L. Gilman, F. J. Fuglister, and J. M. Mitchell, Jr., “On the Power Spectrum of “Red Noise”,” J. Atmos. Sci. 20, 182–184 (1963).

    Article  Google Scholar 

  27. M. E. Mann and J. M. Lees, “Robust Estimation of Background Noise and Signal Detection in Climatic Time Series,” Clim. Change 33, 409–445 (1996).

    Article  Google Scholar 

  28. D. B. Percival and D. A. Rothrock, “’Eyeballing’ Trends in Climate Time Series: A Cautionary Note,” J. Clim. 18, 886–891 (2006).

    Article  Google Scholar 

  29. E. Echer, F. L. Guarnieri, N. R. Rigozo, and L. E. Vieira, “A Study of Latitudinal Dependence of the Quasi-Biennial Oscillation in Total Ozone Mapping Spectrometer Total Ozone,” Tellus A 56, 527–535 (2004).

    Article  Google Scholar 

  30. V. N. Aref’ev, K. N. Visheratin, F. V. Kashin, et al., “Spectral Characteristics of Total Ozone and Vertical Temperature Distribution in the Atmosphere over Issyk Kul (Northern Tien Shan),” Proc. SPIE 5027, 51–59 (2003).

    Article  Google Scholar 

  31. A. N. Gruzdev and V. A. Bezverkhnii, “Long-Term Variations in the Quasi-Biennial Oscillation of the Equatorial Stratospheric Wind,” Izv. Akad. Nauk, Fiz. Atm. Okeana 35, 773–785 (1999) [Izv., Atmos. Ocean. Phys. 35, 700–711 (2006)].

    Google Scholar 

  32. K. N. Visheratin, N. E. Kamenogradskii, F. V. Kashin, et al., “Spectral-Temporal Structure of Variations in the Atmospheric Total Ozone in Central Eurasia,” Izv. Akad. Nauk, Fiz. Atm. Okeana 42, 205–223 (2006) [Izv., Atmos. Ocean. Phys. 42, 184–202 (2006)].

    Google Scholar 

  33. A. S. Monin and Yu. A. Shishkov, “Five-Year Cyclicity of Global Weather,” Dokl. Akad. Nauk 358, 395–398 (1998).

    Google Scholar 

  34. S. P. Smyshlyaev, V. Ya. Galin, and E. M. Volodin, “Simulation of the Interannual Variability of the Total Ozone Content in the Midlatitudinal Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 210–221 (2004) [Izv., Atmos. Ocean. Phys. 40, 183–192 (2004)].

    Google Scholar 

  35. A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  36. R. P. Kane, “Quasi-Biennial and Quasi-Triennial Oscillations in Geomagnetic Activity Indices,” Ann. Geophys. 15, 1581–1594 (1997).

    Article  Google Scholar 

  37. J. Polygiannakis, P. Preka-Papadema, and X. Moussas, “On Signal-Noise Decomposition of Time-Series Using the Continuous Wavelet Transform: Application to Sunspot Index,” Mon. Not. R. Astron. Soc. 343, 725–734 (2003).

    Article  Google Scholar 

  38. K. N. Visheratin, “Discrete Character of Variations in the Spectral Composition of the Zurich Series of Wolf Numbers,” in Tr. GAISh, International Symposium “Astronomy 2005—Current State and Prospects” (Moscow, 2005), Vol. LXXVIII [in Russian].

  39. J. P. McCormack, “The Influence of the 11-Year Solar Cycle on the Quasi-Biennial Oscillation,” Geophys. Res. Lett. 30, 2162, doi: 10.1029/2003GL018314 (2003).

    Article  Google Scholar 

  40. V. I. Makarov, A. G. Tlatov, D. K. Callebaut, et al., “Large-Scale Magnetic Field and Sunspot Cycles,” Solar Phys. 198, 409–421 (2001).

    Article  Google Scholar 

  41. A. M. Zvyagintsev, G. M. Kruchenitskii, and A. A. Chernikov, “Variations in the Vertical Distribution of Stratospheric Ozone and Their Correlation with Tropopause Height Variations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 527–536 (2005) [Izv., Atmos. Ocean. Phys. 41, 476–486 (2005)].

    Google Scholar 

  42. D. T. Shindell and G. Faluvegi, “An Exploration of Ozone Changes and Their Radiative Forcing Prior to the Chlorofluorocarbon Era,” Atmos. Chem. Phys. 2, 363–374 (2002).

    Article  Google Scholar 

  43. E. L. Aleksandrov, I. L. Karol’, L. R. Rakipova, et al., Atmospheric Ozone and Global Climate Changes (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  44. K. P. Shine, M. S. Bourqui, P. M. Forster, F. De, et al., “A Comparison of Model-Simulated Trends in Stratospheric Temperatures,” Q. J. R. Meteorol. Soc. 129, 1565–1588 (2003).

    Article  Google Scholar 

  45. N. S. Sidorenkov and P. I. Svirenko, “Monitoring the Angular Momentum of Atmospheric Zonal Winds,” Tr. Gidrometeorol. Tsentra, No. 316, 19–25 (1991).

  46. A. S. Monin, Earth’s Rotation and Climate (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Visheratin.

Additional information

Original Russian Text © K.N. Visheratin, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 502–520.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visheratin, K.N. Interannual variations and trends in zonal mean series of total ozone, temperature, and zonal wind. Izv. Atmos. Ocean. Phys. 43, 461–479 (2007). https://doi.org/10.1134/S0001433807040081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040081

Keywords

Navigation