Skip to main content
Log in

Generation of normal atmospheric modes by stratospheric vacillations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A number of numerical experiments were performed with the use of the middle and upper atmosphere model (MUAM). In these experiments, the atmospheric response to an external excitation in the troposphere was calculated and internal stratospheric vacillations caused by the interaction of stationary planetary waves (SPWs) with the zonal mean flow were modeled. The MUAM is shown to well reproduce the known high-frequency global resonance responses of the atmosphere to an external excitation. The results of modeling show that the stratospheric vacillations caused by the interaction of SPWs and the mean flow are responsible for the generation of low-frequency normal modes in the lower and middle atmosphere. The activity of normal atmospheric modes in the troposphere and stratosphere is noted to increase simultaneously with the development of sudden stratospheric warmings. However, in order to understand which process is primary, an additional analysis of the results of numerical experiments and stratospheric data is necessary. It is inferred that, for an adequate modeling of stratospheric vacillation cycles, atmospheric general circulation models must be capable of reproducing global resonance properties of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Longuet-Higgins, “The Eigenfunctions of Laplace’s Tidal Equation over a Sphere,” Philos. Trans. R. Soc. London 262, 511–607 (1968).

    Article  Google Scholar 

  2. A. A. Dikii, Theory of Oscillations of the Earth’s Atmosphere (Gidrometeoizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  3. H. Volland, Atmospheric Tidal and Planetary Waves (Kluwer, Dordrecht, 1988).

    Google Scholar 

  4. R. S. Lindzen, “Planetary Waves on Beta-Plane,” Mon. Weather Rev. 95, 441–451 (1967).

    Article  Google Scholar 

  5. M. L. Salby, “Survey of Planetary-Scale Traveling Waves: The State of Theory and Observations,” Rev. Geophys. 22, 209–236 (1984).

    Google Scholar 

  6. J. M. Forbes, Tidal and Planetary Waves in the Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph Ser., Ed. by R. M. Johnson and T. L. Killeen (AGU, Washington, 1995), vol. 87, pp. 67–87.

    Google Scholar 

  7. A. I. Pogoreltsev, “Simulation of Planetary Waves and Their Influence on the Zonally Averaged Circulation in the Middle Atmosphere,” Earth, Planets and Space 51, 773–784 (1999).

    Google Scholar 

  8. J. R. Holton and C. Mass, “Stratospheric Vacillation Cycles,” J. Atmos. Sci. 33, 2218–2225 (1976).

    Article  Google Scholar 

  9. P. Haynes, “Stratospheric Dynamics,” Ann. Rev. Fluid Mech. 37, 263–293 (2005).

    Article  Google Scholar 

  10. L. J. Gray, S. Sparrow, M. Juckes, et al., “Flow Regime in the Winter Stratosphere of the Northern Hemisphere,” Q. J. R. Meteorol. Soc. 129(589), 925–945 (2003).

    Article  Google Scholar 

  11. R. K. Scott and L. M. Polvani, “Internal Variability of the Winter Stratosphere. Part I: Time Independent Forcing,” J. Atmos. Sci. 63, 2758–2776 (2006).

    Article  Google Scholar 

  12. K. Fröhlich, A. Pogoreltsev and Ch. Jacobi, “Numerical Simulation of Tides, Rossby and Kelvin Waves with the COMMA-LIM Model,” Adv. Space Res. 32, 863–868 (2003).

    Article  Google Scholar 

  13. K. Fröhlich, A. Pogoreltsev and Ch. Jacobi, “The 48-Layer COMMA-LIM Model,” Report Inst. Meteorol. Univ. (Leipzig, 2003), Vol. 30, pp. 157–185.

    Google Scholar 

  14. N. M. Gavrilov, A. I. Pogorel’tsev, and C. Jacobi, “Numerical Modeling of the Effect of Latitude-Inhomogeneous Gravity Waves on the Circulation of the Middle Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 12–21 (2005) [Izv., Atmos. Ocean. Phys. 41, 9–18 (2005)].

    Google Scholar 

  15. P. G. Richards, J. A. Fennelly, and D. G. Torr, “EUVAC: A Solar EUV Flux Model for Aeronomic Calculations,” J. Geophys. Res. 99, 8981–8992 (1994).

    Article  Google Scholar 

  16. R. G. Roble, Energetics of the Mesosphere and Thermosphere in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph Ser. Ed. by R. M. Johnson and T. L. Killeen (AGU, Washington, 1995), vol. 87, pp. 1–21.

    Google Scholar 

  17. G. I. Marchuk, Numerical Methods in Weather Forecasting (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  18. G. Strang, “On the Construction and Comparison of Difference Schemes,” SIAM J. Numer. Anal. 5, 516–517 (1968).

    Article  Google Scholar 

  19. T. Matsuno, “Numerical Integration of the Primitive Equations by a Simulated Backward Difference Method,” J. Meteorol. Soc. Jpn. 44, 76–84 (1966).

    Google Scholar 

  20. E. Kalnay, et al., “The NCEP/NCAR Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  21. R. Kistler, et al., “The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bull. Am. Meteorol. Soc. 82, 247–267 (2001).

    Article  Google Scholar 

  22. A. Yu. Kanukhina, L. A. Nechaeva, E. V. Suvorova, and A. I. Pogorel’tsev, “Climatic Trends of Temperature, Zonal Flow, and Stationary Planetary Waves from the NCER/NCAR Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43 (2007) (in press).

  23. K. Hamilton and R. R. Garcia, “Theory and Observations of the Short-Period Normal Mode Oscillations of the Atmosphere,” J. Geophys. Res. D 91, 11 867–11 875 (1986).

    Google Scholar 

  24. P. N. Swarztrauber and A. Kasahara, “The Vector Harmonic Analysis of Laplace’s Tidal Equations,” SIAM J. Sci. Statist. Comput. 6, 464–491 (1985).

    Article  Google Scholar 

  25. A. I. Pogoreltsev, I. N. Fedulina, N. J. Mitchell, et al., “Global Free Oscillations of the Atmosphere and Secondary Planetary Waves in the MLT Region during August/September Time Conditions,” J. Geophys. Res. D 107, 4799, doi. 10.1029/2001JD001535 (2002).

    Article  Google Scholar 

  26. I. N. Fedulina, A. I. Pogoreltsev, and G. Vaughan, “Seasonal, Interannual and Short-Term Variability of Planetary Waves in Met Office Stratospheric Assimilated Fields,” Q. J. R. Meteorol. Soc. 130(602), 2445–2458 (2004).

    Article  Google Scholar 

  27. Ch. Torrence and G. P. Compo, “A Practical Guide to Wavelet Analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  28. T. Matsuno, “Circulation and Waves in the Middle Atmosphere in Winter,” Space Sci. Rev. 34, 387–396 (1983).

    Article  Google Scholar 

  29. W. Randel, et al., “The SPAEC Intercomparison of Middle-Atmosphere Climatologies,” J. Clim. 17, 986–1003 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Pogorel’tsev.

Additional information

Original Russian Text © A.I. Pogorel’tsev, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 463–475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorel’tsev, A.I. Generation of normal atmospheric modes by stratospheric vacillations. Izv. Atmos. Ocean. Phys. 43, 423–435 (2007). https://doi.org/10.1134/S0001433807040044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040044

Keywords

Navigation