Skip to main content
Log in

On the influence of atmospheric chemical reactions on the ion composition of aerosol particles in the Baikal region

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Monitoring data on the ion composition of aerosols and gas admixtures in the background and polluted atmosphere of the Lake Baikal region are presented. The ion composition and morphology of aerosols are affected by heterogeneous chemical reactions and variations in relative humidity. Two types of aerosol particles are revealed over this region. The fraction of solid particles recorded in most episodes includes primarily carbonates of alkaline and alkaline-earth metals. With increased atmospheric humidity, these particles are engaged in heterogeneous chemical reactions with gas-phase NH3 and H2SO4, proceeding through the phase of watering. As a result, the composition of these aerosols is changed, and a fraction of aqueous H2O/H2SO4/(NH4)2SO4 aerosol particles of a different composition is formed. On the basis of a physical and chemical analysis of monitoring data on the aerosol composition and concentrations of gas admixtures, the average aerosol-size distribution of different types is estimated. For the first time, the mean acidity of aqueous aerosol particles is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Joint EUROTRAC/CEC Projects, General Report,” in Annual Report 1992 (Garmish-Partenkirchen, 1993), Part 6, pp. 1–17.

  2. Atmos. Chem. Phys. Discuss., Special Issue, No. 2 (2002) (http://www.atmos-chem-phys.acpd/2/).

  3. K. Koutsenogii, P. Koutsenogii, B. Smolyakov, and T. Khodgher, “Monitoring of Spatial and Temporal Variation of the Particle Size Distribution and Chemical Composition of the Atmospheric Aerosol in Siberia,” in Global Atmospheric Change and Its Impact on Regional Air Quality, NATO Science Series, Series IV: Earth and Environmental Sciences, Ed. by I. Barnes (Kluwer, Dordrecht, 2002), Vol. 16, pp. 229–235.

    Google Scholar 

  4. “Atmospheric Aerosols in Siberia,” Certificate of RosAPO RF Database No. 990012, Possessor of Right Limnological Institute, Russian Academy of Sciences, Siberian Division (1999), Appl. No. 990001, Russia (10 March, 1999).

  5. T. V. Khodzher, L. P. Golobokova, V. A. Obolkin, et al., “Diurnal and Seasonal Variability of the Ion Composition of Atmospheric Aerosols in Southeastern Siberia,” Opt. Atmos. Okeana 10, 650–655 (1997).

    Google Scholar 

  6. Manual for Sampling and Chemical Analysis, EMEP/CCC Report no. 1/95/0-7726 (1995).

  7. G. S. Fomin, Water: Control of Chemical, Bacterial, and Radiation Safety According to International Standards (Moscow, 2000) [in Russian].

  8. G. I. Baram, A. L. Vereshchagin, and L. P. Golobokova, “Microcolumn High-Performance Liquid Chromatography with UV Detection for the Determination of Anions in Environmental Materials,” J. Anal. Chem. 5, 854–857 (1999).

    Google Scholar 

  9. A. L. Vereshchagin, V. F. Dudinskii, L. P. Golobokova, et al., “Determination of UV-Absorbing Anions in Environmental Samples by Microcolumn High-Performance Liquid Chromatography,” J. Anal. Chem. 55, 1000–1002 (2000).

    Article  Google Scholar 

  10. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (Jet Propulsion Laboratory Publication, 1997), No. 12.

  11. C. A. Cantrell, R. E. Shetter, T. M. Gilpin, and J. G. Calvert, “Peroxy Radicals Measured During Mauna Loa Observatory Photochemistry Experiment, 2: The Data and First Analysis,” J. Geophys. Res. D 101, 14643–14652 (1996).

    Article  Google Scholar 

  12. S. L. Clegg and P. Brimblecumbe, “Solubility of Volatile Electrolytes in Multicomponent Solutions with Atmospheric Applications,” ACS Symp. Ser. 416, 58–73 (1990).

    Article  Google Scholar 

  13. H. Herrmann, B. Ervens, H.-W. Jacobi, et al., “CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Troposheric Chemistry,” J. Atmos. Chem. 36, 231–284 (2000).

    Article  Google Scholar 

  14. S. E. Schwartz, Acid Precipitation Series, Ed. by J. G. Calvert (Butterworth, Boston, 1984).

    Google Scholar 

  15. S. L. Clegg, P. Brimblecombe, and A. S. Wexler, “A Thermodynamic Model of the System H+-NH +4 -SO 2−4 -NO 3 -H2O at Tropospheric Temperatures,” J. Phys. Chem. A 102, 2137–2154 (1998).

    Article  Google Scholar 

  16. A. S. Wexler and S. L. Clegg, “Atmospheric Aerosol Models for System Including Ions H+, NH +4 , Na+, SO 2−4 , NO 3 , Cl, Br and H2O,” J. Geophys. Res. D 107 (2002).

  17. Handbook for Chemists (Gos. Nauchn.-Tekh. Izd. Khim. Literatury, Leningrad, 1952), Vol. 3 [in Russian].

  18. D. R. Hanson and E. Kosciuch, “The NH3 Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solutions,” J. Phys. Chem. A 107, 2199–2208 (2003).

    Article  Google Scholar 

  19. G. P. Brasseur, J. J. Orlando, and G. S. Tyndall, Atmospheric Chemistry and Global Change (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  20. P. Laj, S. Fuzzi, M. C. Facchini, et al., “Experimental Evidence for In-Cloud Production of Aerosol Sulphate,” Atmos. Environ. 31, 2503–2514 (1997).

    Article  Google Scholar 

  21. P. K. Kutsenogii, N. S. Bufetov, V. I. Drosdova, et al., “Ion Composition of Atmospheric Aerosol near Lake Baikal,” Atmos. Environ., 27 (1993).

  22. R. D. Latterman, Calcium Dissolution Rate in Limestone Contactors (Syracuse Univ., Syracuse, New York, 1995), pp. 1–112.

    Google Scholar 

  23. M. Liler, Reaction Mechanisms in Sulphuric Acid (Academic, London, 1971).

    Google Scholar 

  24. K. S. Pitzer, R. N. Roy, and L. F. Silvestor, “Thermodynamics of Electrolytes. 7. Sulfuric Acid,” J. Am. Chem. Soc. 99, 4930–4936 (1977).

    Article  Google Scholar 

  25. D. R. Hanson, “Mass Accommodation of H2SO4 and CH3SO3H on Water-Sulfuric Acid Solutions from 6 to 97% RH,” J. Phys. Chem. A 109, 6919–6927 (2005).

    Article  Google Scholar 

  26. V. I. Alekseev, Quantitative Analys (Goskhimizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  27. N. A. Kendal and S. T. Martin, “Mobile Ions on Carbonic Surfaces,” Geochim. Cosmochim. Acta 69, 3257–3263 (2005).

    Article  Google Scholar 

  28. M. Wallin and I. Bjerle, “Rate Model for Limestone Dissolution: A Comparison,” Geochem. Cosmochim. Acta 53, 1171–1176 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Yermakov, A.E. Aloyan, T.V. Khodzer, L.P. Golobokova, V.O. Arutyunyan, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 2, pp. 234–245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yermakov, A.N., Aloyan, A.E., Khodzer, T.V. et al. On the influence of atmospheric chemical reactions on the ion composition of aerosol particles in the Baikal region. Izv. Atmos. Ocean. Phys. 43, 208–218 (2007). https://doi.org/10.1134/S0001433807020077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807020077

Keywords

Navigation