Skip to main content
Log in

Structure and optical properties of soot aerosol in a moist atmosphere: 2. Influence of hydrophilicity of particles on the extinction, scattering, and absorption coefficients

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The optical coefficients of soot particles are measured in a flow-through optical cell at the wavelength 635 nm in a dry atmosphere and in an atmosphere saturated with water vapor. Two types of systems modeling atmospheric soot aerosols and differing in the degree of hygroscopicity of their particles are investigated and compared. One of the systems contains hydrophobic acetylene soot, and the other contains hydrophilic soot obtained through modification of the initial soot by vapors of glutaric acid. The results show that the optical properties of hydrophobic soot depend only slightly on the conditions of moistening, whereas the optical properties of hydrophilic soot change abruptly upon its moistening because of the formation of a hydrate shell. In the atmosphere saturated with water-vapor, the monomolecular layer of a hydrophilic organic substance leads to the watering of particles and an abrupt (more than twofold) increase in the cross section of light scattering. A further growth of the hydrophilic component of soot particles initiates the formation of micron drops on them, thus resulting not only in the natural effect of light scattering enhancement but also in a noticeable light absorption increase. In particular, a light absorption enhancement by a factor of 3.5 is characteristic of particles of enriched hydrophilic soot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Tarasova, I. A. Gorchakova, M. A. Sviridenkov, et al., “Estimation of the Radiative Forcing of Smoke Aerosol from Radiation Measurements at the Zvenigorod Scientific Station in the Summer of 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 514–524 (2004) [Izv. Atmos. Ocean. Phys. 40, 454–463 (2004)].

    Google Scholar 

  2. V. Ramanathan, P. J. Crutzen, J. Lelieveld, et al., “The Indian Ocean Experiment: An Integrated Analysis of the Climate Forcing and Effects of the Great Indo-Asian Haze,” J. Geophys. Res. D 106, 398 (2001).

    Article  Google Scholar 

  3. R. W. Bergstrom, P. B. Russell, and P. Hignett, “Wavelength Dependence of the Adsorption of Black Carbon Particles: Predictions and Results from TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo,” J. Atmos. Sci. 59, 567–577 (2002).

    Article  Google Scholar 

  4. K. Ya. Kondrat’ev, N. I. Moskalenko, S. V. Skvortsova, et al., “Modeling Optical Characteristics of Soot Aerosol,” Dokl. Akad. Nauk SSSR, Ser. Geofizika. 296, 314–317 (1987).

    Google Scholar 

  5. J. Hansen, M. Sato, and R. Ruedy, “Radiative Forcing and Climate Response,” J. Geophys. Res. D 102, 6831–6864 (1997).

    Article  Google Scholar 

  6. J. M. Haywood, D. L. Roberts, and A. Slingo, “General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol,” J. Clim. 10, 1562–1577 (1997).

    Article  Google Scholar 

  7. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001—Scientific Basis, Technical Summary of the Working Group I Report (Cambridge Univ. Press, Cambridge, 2001).

  8. M. Z. Jacobson, “Global Direct Radiative Forcing Due to Multicomponent Anthropogenic and Natural Aerosols,” J. Geophys. Res. D 106, 1551–1568 (2001).

    Article  Google Scholar 

  9. S. H. Chung and J. H. Seinfeld, “Global Distribution and Climate Forcing of Carbonaceous Aerosols,” J. Geophys. Res. D 107, doi: 10.1029/2001JD001397 (2002).

  10. C. Wang, “A Modeling Study on the Climate Impacts of Black Carbon Aerosols,” J. Geophys. Res. 109, D03106, doi: 10.1029/2003JD004084 (2004).

    Article  Google Scholar 

  11. S. L. Clegg and K. S. Pitzer, “Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalised Equations for Symmetrical Electrolytes,” J. Phys. Chem. 96, 3513–3520 (1992).

    Article  Google Scholar 

  12. S. L. Clegg, P. Brimblecombe, and A. S. Wexler, “Thermodynamic Model of the System H+-NH +4 -SO 2−4 -NO3-H2O at Tropospheric Temperatures,” J. Phys. Chem. A 102, 2137–2154 (1998).

    Article  Google Scholar 

  13. E. F. Mikhailov and S. S. Vlasenko, “Structure and Optical Properties of Soot Aerosol in a Moist Atmosphere: Part 1. Change in the Structure of Soot Particles in the Process of Condensation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43 (2007) [Izv., Atmos. Ocean. Phys. 43, 195–207 (2007).

  14. C. L. Erlick, L. M. Russell, and A. Ramaswamy, “A Microphysics-Based Investigation of the Radiative Effects of Aerosol-Cloud Interactions,” J. Geophys. Res. A 106, 1249–1270 (2001).

    Article  Google Scholar 

  15. M. L. Pitchford and P. H. McMurry, “Relationship Between Measured Water Vapor Growth and Chemistry of Atmospheric Aerosol for Grand Canyon, Arizona, in Winter 1990,” Atmos. Environ. 28, 827–839 (1994).

    Article  Google Scholar 

  16. M. Gysel, S. Nyeki, E. Weingarthner, et al., “Properties of Jet Engine Combustion Particles during the PartEmis Experiment: Hygroscopicity at Subsaturated Conditions,” Geophys. Res. Lett. 30, doi: 10.1029/2003GL016896 (2003).

  17. E. F. Mikhailov, S. S. Vlasenko, A. A. Kiselev, and T. I. Ryshkevich, “Change in the Structure of Fractal Soot Particles under the Effect of Capillary Forces: Experimental Results,” Kolloidn. Zh. 59, 195–203 (1997).

    Google Scholar 

  18. C. G. Peng, M. N. Chan, and C. K. Chan, “The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Predictions,” Environ. Sci. Technol. 35, 4495–4501 (2001).

    Article  Google Scholar 

  19. http://ihome.ust.hk/:_keckchan/hygroscopic.html

  20. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Short Handbook of Chemistry (Naukova Dumka, Kiev, 1974) [in Russian].

    Google Scholar 

  21. R. A. Dobbings, G. W. Mulholland, and N. P. Bryner, “Comparison of a Fractal Smoke Optics Model with Light Extinction Measurements,” Atmos. Environ. 28, 889–897 (1994).

    Article  Google Scholar 

  22. J. Zhu, M. Y. Choi, G. W. Milholland, and L. A. Gritzo, “Soot Scattering Measurements in the Visible and Near-Infrared Spectrum,” in Proceedings of 28th International Symposium on Combustion (2002), pp. 439–446.

  23. J. Nelson, “Test of a Mean Field Theory for the Optics of Fractal Clusters,” J. Modern Opt. 36, 1031–1057 (1989).

    Google Scholar 

  24. H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light Scattering and Absorption by Fractal Agglomerates and Coagulations of Smoke Aerosols,” J. Modern Opt. 37, 171–181 (1990).

    Google Scholar 

  25. U. O. Koylu and G. M. Faeth, “Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times,” J. Heat Transfer 116, 152–159 (1994).

    Article  Google Scholar 

  26. M. H. Schnaiter, H. Horvath, O. Mohler, et al., “UV-VIS-NIR Spectral Optical Properties of Soot and Soot-Containing Aerosols,” J. Aeros. Sci 34, 1421–1444 (2003).

    Article  Google Scholar 

  27. C. E. Corrigan and T. Novakov, “Cloud Condensation Nucleus Activity of Organic Compounds: A Laboratory Study,” Atmos. Environ. 33, 2661–2668 (1999).

    Article  Google Scholar 

  28. C. N. Cruz and S. N. Pandis, “A Study of the Ability of Pure Secondary Organic Aerosol to Act As Cloud Condensation Nuclei,” Atmos. Environ. 31, 2205–2214 (1997).

    Article  Google Scholar 

  29. P. P. Kumar, K. Broekhuizen, and J. P. D. Abbatt, “Organic Acids As Cloud Condensation Nuclei: Laboratory Studies of Highly Soluble and Insoluble Species,” Atmos. Chem. Phys. 3, 509–520 (2003).

    Article  Google Scholar 

  30. K. A. Fuller, “Effects of Mixing on Extinction by Carbonaceous Particles,” J. Geophys. Res. D 109, 15941–15954 (1999).

    Article  Google Scholar 

  31. V. M. Markel, “The Effects of Averaging on the Enhancement Factor for Absorption of Light by Carbon Particles in Microdroplets of Water,” J. Quantum Spectroscopy Radiat. Transfer 72, 765–774 (2002).

    Article  Google Scholar 

  32. K. S. Pitzer, “Thermodynamics of Electrolytoes. I. Theoretical Basis and General Equations,” J. Chem. Phys. 77, 268–277 (1973).

    Article  Google Scholar 

  33. I. Mokbel, S. Ye, J. Jose, and P. Xans, “Study of Non Ideality of Various Aqueous Sodium Chlorid Solutions by Vapor Pressures Measurements and Correlation of Experimental Results by Pitzer’s Method,” J. Chim. Phys. 94, 122–137 (1997).

    Google Scholar 

  34. M. Z. Jacobson, “A Physically-Based Treatment of Elemental Carbon Optics: Implications for Global Direct Forcing of Aerosols,” Geophys. Res. Let. 27, 217–220 (2000).

    Article  Google Scholar 

  35. P. T. Ackerman and O. B. Toon, “Absorption of Visible Radiation in Atmosphere Containing Mixtures of Absorbing and Nonabsorbing Particles,” Appl. Opt. 20, 3661–3668 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.F. Mikhailov, S.S. Vlasenko, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 2, pp. 221–233.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailov, E.F., Vlasenko, S.S. Structure and optical properties of soot aerosol in a moist atmosphere: 2. Influence of hydrophilicity of particles on the extinction, scattering, and absorption coefficients. Izv. Atmos. Ocean. Phys. 43, 195–207 (2007). https://doi.org/10.1134/S0001433807020065

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807020065

Keywords

Navigation