Skip to main content
Log in

Structure and optical properties of soot aerosol in a moist atmosphere: 1. Structural changes of soot particles in the process of condensation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A laboratory setup and a procedure for measuring the volume coefficients and mean cross sections of extinction, scattering, and absorption of soot particles in the medium of saturated water vapor are described. A method for hydrophilization of the surface of soot particles, which makes it possible to obtain model objects with specified hygroscopic properties, is presented. The processes of transformation of soot particles are analyzed with the use of data of electron-microscopic investigations on the basis of the fractal approach. The structural parameters of hydrophobic soot are shown to depend on the conditions of moistening, whereas hydrophilic particles are subject to substantial structural changes indicative of their watering. Investigation of the coagulation of soot particles with drops shows that hydrophobic particles form a weakly bound system; they coagulate on the surface of drops and cause no changes in the structure of soot aggregates. During the coagulation, hydrophilic soot particles penetrate inside a drop and irreversibly form a mixed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ramanathan, P. J. Crutzen, J. Lelieveld, et al., “The Indian Ocean Experiment: An Integrated Analysis of the Climate Forcing and Effects of the Great Indo-Asian Haze,” J. Geophys. Res. D 106, 398 (2001).

    Article  Google Scholar 

  2. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Atmosphere-Aerosols, Climate, and the Hydrological Cycle,” Science 294(5549), 2119–2124 (2001).

    Article  Google Scholar 

  3. T. A. Tarasova, I. A. Gorchakova, M. A. Sviridenkov, et al., “Estimation of the Radiative Forcing of Smoke Aerosol from Radiation Measurements at the Zvenigorod Scientific Station in the Summer of 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 514–524 (2004) [Izv. Atmos. Ocean. Phys. 40, 454–463 (2004)].

    Google Scholar 

  4. V. M. Kopeikin, “Atmospheric Soot Aerosol over Moscow,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34, 104–110 (1998) [Izv. Atmos. Ocean. Phys. 34, 91–97 (1998)].

    Google Scholar 

  5. J. Hansen, M. Sato, and R. Ruedy, “Radiative Forcing and Climate Response,” J. Geophys. Res. D 102, 6831–6864 (1997).

    Article  Google Scholar 

  6. J. M. Haywood, D. L. Roberts, A. Slingo, et al., “General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol,” J. Clim 10, 1562–1577 (1997).

    Article  Google Scholar 

  7. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001—Scientific Basis, Technical Summary of the Working Group I Report (Cambridge Univ. Press, Cambridge, 2001).

  8. M. Z. Jacobson, “Global Direct Radiative Forcing Due to Multicomponent Anthropogenic and Natural Aerosols,” J. Geophys. Res. D 106, 1551–1568 (2001).

    Article  Google Scholar 

  9. C. Wang, “A Modeling Study on the Climate Impacts of Black Carbon Aerosols,” J. Geophys. Res. 109, D03106, doi: 10.1029/2003JD004084 (2004).

    Article  Google Scholar 

  10. S. H. Chung and J. H. Seinfeld, “Global Distribution and Climate Forcing of Carbonaceous Aerosols,” J. Geophys. Res. 107, doi: 10.1029/2001JD001397 (2002).

  11. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

    Google Scholar 

  12. S. Zappoli, A. Andracchio, S. Fuzzi, et al., “Inorganic, Organic and Macromolecular Components of Fine Aerosol in Different Areas of Europe in Relation to Their Water Solubility,” Atmos. Environ. 33, 2733–2743 (1999).

    Article  Google Scholar 

  13. E. F. Mikhailov, S. S. Vlasenko, and A. A. Kiselev, “Optics and Structure of Carbonaceous Soot Aggregates,” in Optics of Nanostructured Materials (Wiley, New York, 2001), pp. 413–466.

    Google Scholar 

  14. W. F. Cooke and J. J. N. Wilson, “A Global Black Carbon Aerosol Model,” J. Geophys. Res. 101, 19 395–19 409 (1996).

    Google Scholar 

  15. M. Posfai, J. R. Anderson, P. R. Buseck, and H. Sievering, “Soot and Sulfate Aerosol Particles in the Remote Marine Troposphere,” J. Geophys. Res. D 104, 21 685–21 693 (1999).

    Article  Google Scholar 

  16. B. Croft, U. Lohman, and K. Salzen, “Black Carbon Ageing in the Canadian Centre for Climate Modeling and Analysis Atmospheric General Circulation Model,” Atmos. Chem. Phys. 5, 1931–1949 (2005).

    Article  Google Scholar 

  17. A. Limbeck and H. Puxbaum, “Dependence of In-Cloud Scavenging of Polar Organic Aerosol Compounds on the Water Solubility,” J. Geophys. Res. D 105, 19 857–19 867 (2000).

    Article  Google Scholar 

  18. C. N. Cruz and S. N. Pandis, “The Effect of Organic Coatings on the Cloud Condensation Nuclei Activation of Inorganic Atmospheric Aerosol,” J. Geophys. Res. D 103, 13 111–13 123 (1998).

    Article  Google Scholar 

  19. E. Weingartner, H. Burtscher, and U. Baltensperger, “Hygroscopic Properties of Carbon and Diesel Soot Particles,” Atmos. Environ. 31, 2311–2327 (1997).

    Article  Google Scholar 

  20. R. Hitzenberger, A. Berner, H. Giebl, et al., “Black Carbon (BC) in Alpine Aerosols and Cloud Water-Concentrations and Scavenging Efficiencies,” Atmos. Environ. 35, 5135–5141 (2001).

    Article  Google Scholar 

  21. J. G. Hudson, J. Hallett, and C. F. Rogers, “Field and Laboratory Measurements of Cloud-Forming Properties of Combustion Aerosols,” J. Geophys. Res. D 96, 10 849–10 859 (1991).

    Google Scholar 

  22. G. Lamel and T. Novakov, “Water Nucleation Properties of Carbon Black and Diesel Soot Particles,” Atmos. Environ. 29, 813–823 (1995).

    Article  Google Scholar 

  23. D. E. Hagen, M. B. Trueblood, and D. R. White, “Hydration Properties of Combustion Aerosols,” Aeros. Sci. Technol. 10, 63–69 (1989).

    Google Scholar 

  24. G. L. Stephens and S. C. Tsay, “On the Cloud Absorption Anomaly,” Q. J. R. Meteorol. Soc. 116(493), 671–704 (1990).

    Article  Google Scholar 

  25. V. Ramanathan, V. B. Subasilar, G. J. Zhang, et al., “Warm Pool Heat Budget and Shortwave Cloud Forcing: A Missing Physics,” Science 267(5197), 499–503 (1995).

    Article  Google Scholar 

  26. K. Ya. Kondrat’ev, V. I. Binenko, and I. N. Mel’nikova, “Absorption of Solar Radiation by a Cloudy and a Cloudless Atmosphere,” Meteorol. Gidrol. No. 2, 14–23 (1996).

  27. A. V. Vasil’ev and I. N. Mel’nikova, Shortwave Solar Radiation in the Earth’s Atmosphere: Calculations, Measurements, and Interpretation (NIIKh, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  28. R. Cess, M. N. Zhang, P. Minnis, et al., “Absorption of Solar Radiation by Clouds: Observations versus Models,” Science 267(5197), 496–499 (1995).

    Article  Google Scholar 

  29. Z. Li, A. P. Trishchenko, H. W. Barker, et al., “Analyses of Atmospheric Radiation Measurement (ARM) Program’s Enhanced Shortwave Experiment (ARESE) Multiple Data Sets for Studying Cloud Absorption,” J. Geophys. Res. D104, 19 127–19 134 (1999).

    Google Scholar 

  30. P. Chylek and J. Hallett, “Enhanced Absorption of Solar Radiation by Cloud Droplets Containing Soot Particles on Their Surface,” Q. J. R. Meteorol. Soc. 118(503), 167–172 (1992).

    Article  Google Scholar 

  31. P. Chylek, D. Ngo, and R. G. Pinnik, “Resonance Structure of Composite and Slightly Absorbing Spheres,” J. Opt. Soc. Am. A 9, 775–780 (1992).

    Google Scholar 

  32. K. A. Fuller, “Scattering and Adsorption Cross Section of Compounded Spheres. I. Theory for External Aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).

    Google Scholar 

  33. K. A. Fuller, “Scattering and Absorption Cross Section of Compounded Spheres. II. Calculation for External Aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).

    Article  Google Scholar 

  34. K. A. Fuller, “Scattering and Adsorption Cross Section of Compounded Spheres. III. Spheres Containing Arbitrarily Located Spherical Inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995).

    Google Scholar 

  35. K. A. Fuller, “Effects of Mixing on Extinction by Carbonaceous Particles,” J. Geophys. Res. D 109, 15 941–15 954 (1999).

    Google Scholar 

  36. V. M. Markel and V. M. Shalaev, “Absorption of Light by Soot Particles in Micro-Droplets of Water,” J. Quantum Spectrosc. Radiat. Transfer 63, 321–339 (1999).

    Article  Google Scholar 

  37. V. M. Markel, “The Effects of Averaging on the Enhancement Factor for Absorption of Light by Carbon Particles in Microdroplets of Water,” J. Quantum Spectrosc. and Radiat. Transfer 72, 765–774 (2002).

    Article  Google Scholar 

  38. J. Lawrence and P. Koutrakis, “Measurement and Speciation of Gas and Particle Phase Organic Acidity in an Urban Environment 2. Analytical,” J. Geophys. Res. D 101, 9171–9184 (1996).

    Article  Google Scholar 

  39. P. Saxena and L. M. Hildemann, “Water-Soluble Organics in Atmospheric Particles: A Critical Review of the Literature and Application of Thermodynamics to Identify Candidate Compounds,” J. Atmos. Chem. 24, 57–109 (1996).

    Article  Google Scholar 

  40. S. Fuzzi, S. Decesari, M. C. Facchini, et al., “A Simplified Model of the Water Soluble Organic Component of Atmospheric Aerosols,” Geophys. Res. Lett. 28, 4079–4082 (2001).

    Article  Google Scholar 

  41. B. J. Finlayson-Pitts and J. N. Pitts, Jr. Chemistry of Upper and Lower Atmosphere (Academic, San Diego, 2000).

    Google Scholar 

  42. X. Yao, “Fang M., Chan K. Size Distributions and Formation of Dicarboxylic Acids in Atmospheric Particles,” Atmos. Environ. 36, 2099–2107 (2002).

    Article  Google Scholar 

  43. A. J. Prenni, P. J. DeMott, S. M. Kreidenweis, et al., “The Effects of Low Molecular Weight Dicarboxylic Acids on Cloud Formation,” J. Phys. Chem. A 105, 11 240–11 248 (2001).

    Article  Google Scholar 

  44. A. J. Prenni, P. D. DeMott, and S. M. Kriedenweis, “Water Uptake of Internally Mixed Particles Containing Ammonium Sulphate and Dicarbocylic Acids,” Atmos. Environ. 37, 4243–4245 (2003).

    Article  Google Scholar 

  45. Y. Tao and P. H. McMurry, “Vapor Pressure and Surface Free Energies of C14–C18 Monocarboxylic Acids and C5 and C6 Dicarboxylic Acids,” Envirion. Sci. Technol. 23, 1519–1523 (1989).

    Article  Google Scholar 

  46. N. A. Fuks and A. G. Sutugin, “Monodisperse Aerosols,” Usp. Khim. 34, 276–299 (1965).

    Google Scholar 

  47. G. W. Mulholland and N. P. Bryner, “Radiometric Model of the Transmission Cell-Reciprocal Nephelometer,” Atmos. Envoron. 28, 873–887 (1994).

    Article  Google Scholar 

  48. S. Brunauzr, Adsorption of Gases and Vapors (Inostrannaya Literatura, Moscow, 1948) [in Russian].

    Google Scholar 

  49. S. Gregg and K. Sink, Adsorption, Surface Area, and Porosity (Academic, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  50. E. M. Patterson, R. M. Duckworth, C. M. Wyman, et al., “Measurements of the Optical Properties of the Smoke Emissions from Particles, Hydrocarbons, and Other Urban Fuels for Nuclear Winter Studies,” Atmos. Environ. A 25, 2539–2552 (1991).

    Google Scholar 

  51. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  52. U. O. Koylu and G. M. Faeth, “Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times,” J. Heat Transfer 116, 152–159 (1994).

    Article  Google Scholar 

  53. L. S. Leibovitch and T. Toth, “A Fast Algorithm to Determine Fractal Dimensions by Box Counting,” Phys. Lett. A 141(8), 386–390 (1989).

    Article  Google Scholar 

  54. A. M. Brasil, T. L. Farias, and M. G. Carvalho, “A Recipe for Image Characterisation of Fractal-Like Aggregates,” J. Aerosol Sci. 30, 1379–1389 (1999).

    Article  Google Scholar 

  55. J. Cai, N. Lu, and C. M. Sorensen, “Comparison of Size and Morphology of Soot Aggregates As Determined by Light Scattering and Electron Microscope Analysis,” Langmur. 9, 2861–2867 (1993).

    Article  Google Scholar 

  56. E. F. Mikhailov, S. S. Vlasenko, A. A. Kiselev, and T. I. Ryshkevich, “Change in the Structure of Fractal Soot Particles under the Effect of Capillary Forces: Experimental Results,” Kolloidn. Zh. 59, 195–203 (1997).

    Google Scholar 

  57. J. Hendricks, B. Karcher, J. Dopelheur, et al., “Simulating the Global Black Carbon Cycle: A Revisit to the Contribution of Aircraft Emissions,” Atmos. Chem. Phys. 4, 2521–2541 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.F. Mikhailov, S.S. Vlasenko, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 2, pp. 206–220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailov, E.F., Vlasenko, S.S. Structure and optical properties of soot aerosol in a moist atmosphere: 1. Structural changes of soot particles in the process of condensation. Izv. Atmos. Ocean. Phys. 43, 181–194 (2007). https://doi.org/10.1134/S0001433807020053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807020053

Keywords

Navigation