Skip to main content
Log in

Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The experience of long-term acoustic remote measurements of vertical wind-velocity profiles at two sites in Moscow is reported. Equipment performances and measurement conditions are described. Acoustic measurement features characteristic of a large city with high traffic noise and spurious reflections from buildings are discussed. Criteria and techniques of rejecting noisy and false signals are described as well as the methods of statistical data processing suitable in the case of a signal-to-noise ratio rapidly varying in time and a significant number of rejected signals. Preliminary results of measurements are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Brown and F. F. Hall, Jr., “Advances in Atmospheric Acoustics,” Rev. Geophys. Space Phys. 16, 47–110 (1978).

    Google Scholar 

  2. M. A. Kallistratova, “Acoustic and Radio-Acoustic Remote Sensing Study in the Former USSR,” Int. J. Remote Sensing 15, 251–266 (1994).

    Google Scholar 

  3. N. P. Krasnenko, Acoustic Sounding of the Atmospheric Boundary Layer (Tomsk, 2001).

  4. M. A. Kallistratova and R. L. Coulter, “Application of Sodars in the Study and Monitoring of the Environment,” Meteorol. Atmos. Phys. 85, 21–38 (2004).

    Article  Google Scholar 

  5. A. M. Oboukhov, “Acoustic Scattering in a Turbulent Flow,” Dokl. Akad. Nauk SSSR 30, 611–615 (1941).

    Google Scholar 

  6. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation in (Nauka, Moscow, 1967; US Dept. Commerce, Springfield, 1971).

    Google Scholar 

  7. M. A. Kallistratova, I. V. Petenko, and E. A. Shurygin, “Sodar Studies of the Wind Velocity Field in the Lower Troposphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 23, 451–462 (1987).

    Google Scholar 

  8. V. F. Kramar and R. D. Kouznetsov, “A New Concept for Estimation of Turbulent Parameters Profiles in the ABL Using Sodar Data,” J. Atmos. Ocean. Technol. 19, 1216–1224 (2002).

    Article  Google Scholar 

  9. R. D. Kouznetsov, V. F. Kramar, and M. A. Kallistratova, “Remote Determination of Momentum — Flux Profiles in the Lower Atmospheric Boundary Layer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 757–765 (2006) [Izv., Atmos. Okean. Phys. 42, 696–703 (2006)].

    Google Scholar 

  10. M. A. Kallistratova, “The Use of Sodar in Studying Urban Climate: A Review,” in Proceedings of 5th International Conference on Urban Climate, Lodz, Poland, 2003, Part 2, pp. 335–340.

  11. V. P. Yushkov, M. A. Kallistratova, E. V. Karavaeva, et al., “Measurement of the Wind Field over a City with the Method of Acoustic Sounding,” Vestn. Mosk. Univ., Ser. 3, No. 5, 46–50 (2003).

  12. R. Kouznetsov, “Estimates of Vertical Turbulence Structure by Sodar in the Urban Air,” in Proceedings of 5th International Conference on Urban Climate, Lodz, Poland, 2003, Part 2, pp. 345–348.

  13. M. A. Kallistratova, M. S. Pekur, and V. P. Yushkov, “Differences in the Wind Velocity in the Boundary Layer between Urban and Rural Areas,” Vestn. Mosk. Univ., Ser. 3, No. 5, 55–59 (2005).

  14. H. Melling and R. List, “Characteristics of Vertical Velocity Fluctuations in a Convective Urban Boundary Layer,” J. Appl. Meteorol. 19, 1184–1195 (1980).

    Article  Google Scholar 

  15. R. Dohrn, E. Raschke, A. Bujnoch, and G. Warmbier, “Inversion Structure Heights above the City of Cologne (Germany) and a Rural Station Nearby As Measured with Two Sodars,” Meteorol. Rdsch. 35, 133–144 (1982).

    Google Scholar 

  16. G. Mastrantonio, A. Viola, S. Argentini, et al., “Observation of See Breeze Events in Rome and the Surrounding Area by a Network of Doppler Sodars,” Boundary-Layer Meteorol. 71, 67–80 (1994).

    Article  Google Scholar 

  17. M. P. Rao, P. Castracane, S. Casadio, et al., “Observations of Atmospheric Solitary Waves in the Urban Boundary Layer,” Boundary Layer Meteorol. 111, 85–108 (2004).

    Article  Google Scholar 

  18. L. K. Berg, R. M. Reynolds, K. J. Allwine, and A. Blumberg, “Comparisons of Measurements Made Using Two Sodars in an Urban Environment,” in Proceedings of 6th Symposium on the Urban Environment at 86th AMS Annual Meeting, Atlanta, United States, 2005, paper JP2.9.

  19. G. A. Kourbatov, M. A. Kallistratova, R. D. Kouznetsov, et al., “Use of a Sodar in Physical Laboratory Course,” in Proceedings of XIII Session of the Russian Acoustical Society, Moscow, Russia 2003), Vol. 4, pp. 182–185 [in Russian].

  20. R. D. Kouznetsov, M. A. Kallistratova, and V. G. Perepelkin, “New Sodar LATAN-3 for Studies of the Atmospheric Turbulence,” in Abstracts of Papers of VIII Russian Conference of Young Scientists on the Atmospheric Composition and Electric Processes, Moscow, Russia, 2004 (IAP RAN, Moscow, 2004), pp. 31–32 [in Russian].

    Google Scholar 

  21. R. D. Kouznetsov, “Acoustic Locator LATAN-3 for Studies of the Atmospheric Boundary Layer,” Opt. Atmos. Okeana. (2007) (in press).

  22. V. A. Gladkikh, A. E. Makienko, and V. A. Fedorov, “Acoustic Doppler Locator Volna-3,” Opt. Atmos. Okeana 12, 437–444 (1999).

    Google Scholar 

  23. H. Graß1, S. Pang, and F. Mo, “A Minisodar on a Single DSP Board,” in Proceedings of 10th International Symposium on Acoustic Remote Sensing (ISARS’2000), Auckland, New Zealand, 2000, pp. 39–44.

  24. H. Graß1, S. Pang, and F. Mo, “A Comparison of Several High Frequency Doppler Sodar Configurations,” in Proceedings of 11th International Symposium on Acoustic Remote Sensing (ISARS’2002), Rome, Italy, 2002, pp. 123–126.

  25. B. S. Gera, T. K. Saxena, G. Mastrantonio, et al., “Development of Micro-Controller Based Multi-Frequency Doppler Sodar,” in Proceedings of 11th International Symposium on Acoustic Remote Sensing (ISARS’2002), Rome, Italy, 2002, pp. 107–110.

  26. M. A. Kallistratova and I. V. Petenko, “Facility for Acoustic Sounding of the Wind Velocity and Height of the Mixing Layer (Sodar),” in Basic Sciences for National Economy (Nauka, Moscow, 1990), pp. 426–430 [in Russian].

    Google Scholar 

  27. S. Vogt, F. Beyrich, N. Kalthoff, and U. Weisensee, “Comparison of Two Doppler Sodar Systems with a Radiosonde System during the SANA1993 Field Experiment,” in Proceedings of 7th International Symposium on Acoustic Remote Sensing (ISARS’94), Boulder, United States, 1994, pp. 3.145–3.150.

  28. I. V. Petenko, E. A. Shurygin, J. Neisser, and Th. Foken, “Comparison of Sodar and Turbulent Measurements, in Proceedings of Field Experiment KOPEX-86 “Structure of the Boundary Layer over Non-Homogeneous Terrain” (Prague, 1988), pp. 37–55.

  29. P. H. Hildebrand and B. Ackerman, “Urban Effects on the Convective Boundary Layer,” J. Atmos. Sci. 41, 76–91 (1984).

    Article  Google Scholar 

  30. G. Mastrantonio, L. Rossini, S. Argentini, et al., “The Rome Urban Heat Island Effect Observed by a Network of Sodars,” in Proceedings of 8th International Symposium on Acoustic Remote Sensing (ISARS’2002), Rome, Italy, 2002, pp. 7.39–7.44.

  31. M. Roth, “Review of Atmospheric Turbulence over Cities,” Q. J. R. Meteorol. Soc. 126, 941–990 (2000).

    Article  Google Scholar 

  32. M. A. Kallistratova, H. R. Lehman, J. Neisser, et al., “Erste Ergebnisse von Messenger mit enem Vertical-SODAR,” Z. Meteorol. 36, 229–237 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Yushkov, M.A. Kallistratova, P.D. Kuznetsov, G A. Kurbatov, V.F. Kramar, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 2, pp. 193–205.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yushkov, V.P., Kallistratova, M.A., Kouznetsov, R.D. et al. Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar. Izv. Atmos. Ocean. Phys. 43, 168–180 (2007). https://doi.org/10.1134/S0001433807020041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807020041

Keywords

Navigation