Izvestiya, Atmospheric and Oceanic Physics

, Volume 43, Issue 1, pp 1–14 | Cite as

Climate and carbon cycle variations in the 20th and 21st centuries in a model of intermediate complexity

  • A. V. Eliseev
  • I. I. Mokhov
  • A. A. Karpenko
Article

Abstract

The climate model of intermediate complexity developed at the Oboukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), has been supplemented by a zero-dimensional carbon cycle model. With the carbon dioxide emissions prescribed for the second half of the 19th century and for the 20th century, the model satisfactorily reproduces characteristics of the carbon cycle over this period. However, with continued anthropogenic CO2 emissions (SRES scenarios A1B, A2, B1, and B2), the climate-carbon cycle feedback in the model leads to an additional atmospheric CO2 increase (in comparison with the case where the influence of climate changes on the carbon exchange between the atmosphere and the underlying surface is disregarded). This additional increase is varied in the range 67–90 ppmv depending on the scenario and is mainly due to the dynamics of soil carbon storage. The climate-carbon cycle feedback parameter varies nonmonotonically with time. Positions of its extremes separate characteristic periods of the change in the intensity of anthropogenic emissions and of climate variations. By the end of the 21st century, depending on the emission scenario, the carbon dioxide concentration is expected to increase to 615–875 ppmv and the global temperature will rise by 2.4–3.4 K relative to the preindustrial value. In the 20th–21st centuries, a general growth of the buildup of carbon dioxide in the atmosphere and ocean and its reduction in terrestrial ecosystems can be expected. In general, by the end of the 21st century, the more aggressive emission scenarios are characterized by a smaller climate-carbon cycle feedback parameter, a lower sensitivity of climate to a single increase in the atmospheric concentration of carbon dioxide, a larger fraction of anthropogenic emissions stored in the atmosphere and the ocean, and a smaller fraction of emissions in terrestrial ecosystems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climate Change: The Supplementary Report to the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, B. A. Callander, and S. K. Varney (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  2. 2.
    P. D. Jones, M. New, D. E. Parker, et al., “Surface Air Temperature and Its Changes over the Past 150 Years,” Rev. Geophys. 37, 173–199 (1999).CrossRefGoogle Scholar
  3. 3.
    Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D. J. Griggs, et al., Eds. (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
  4. 4.
    G. V. Gruza and E. Ya. Ran’kova, “Detection of Climate Changes: The State, Variability, and Extremality of Climate,” Meteorol. Gidrol., 4, 50–66 (2004).Google Scholar
  5. 5.
    “The International ad hoc Detection and Attribution Group. Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances,” J. Clim. 18, 1291–1314 (2005).Google Scholar
  6. 6.
    D. M. Etheridge, L. P. Steele, R. L. Langenfelds, et al., “Natural and Anthropogenic Changes in AtmosphericCO2 over the Last 1000 Years from Air in Antarctic Ice and Firn,” J. Geophys. Res. D 101), 4115–4128 (1996).CrossRefGoogle Scholar
  7. 7.
    C. D. Keeling, J. F. S. Chine, and T. P. Whorf, “Increased Activity of Northern Vegetation Inferred from Atmospheric CO2 Measurements,” Nature 382, 146–149 (1996).CrossRefGoogle Scholar
  8. 8.
    Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, C. Field and M. Raupach, Eds. (Island Press, Washington, DC 2004).Google Scholar
  9. 9.
    T. C. Johns, J. M. Gregory, W. J. Ingram, et al., “Anthropogenic Climate Change for 1860 to 2100 Simulated with the HadCM3 Model under Updated Emission Scenarios,” Clim. Dyn. 20, 583–612 (2003).Google Scholar
  10. 10.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Estimations with the Use of the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 243–247 (2005).Google Scholar
  11. 11.
    K. Ichii, Y. Matsui, Y. Yamaguchi, and K. Ogawa, “Comparison of Global Net Primary Production Trend Obtained from Satellite-Based Normalized Difference Vegetation Index and a Carbon Cycle Model,” Glob. Biogeochem. Cycles 15, 351–364 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Cao, S. D. Prince, J. Small, and S. J. Goetz, “Remotely Sensed Interannual Variations and Trends in Terrestrial net Primary Roductivity 1981–2000,” Ecosystems 7, 233–242 (2004).CrossRefGoogle Scholar
  13. 13.
    N. Zeng, H. Qian, C. Roedenbeck, and M. Heimann, “Impact of 1998–2002 Midlatitude Drought and Warming on Terrestrial Ecosystem and the Global Carbon Cycle,” Geophys. Rev. Lett. 32(22), L22709 (2005).Google Scholar
  14. 14.
    A. M. Tarko, Anthropogenic Changes in Global Biospheric Processes (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  15. 15.
    L. L. Golubyatnikov, I. I. Mokhov, E. A. Denisenko, and V. A. Tikhonov, “Model Estimates of Climate Change Impact on the Vegetation Cover and Atmospheric Carbon Sink,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 22–32 (2005) [Izv., Atmos. Ocean. Phys. 41, 19–28 (2005)].Google Scholar
  16. 16.
    G.-K. Plattner, F. Joos, and T. F. Stocker, “Revision of the Global Carbon Budget Due to Changing Air-Sea Oxygen Fluxes,” Glob. Biogeochem. Cycles 16, 1096 (2002).CrossRefGoogle Scholar
  17. 17.
    J. I. House, I. C. Prentice, N. Ramankutty, et al., “Reconciling Apparent Inconsistencies in Estimates of Terrestrial CO2 Sources and Sinks,” Tellus B 55, 345–363 (2003).CrossRefGoogle Scholar
  18. 18.
    C. Le Quéré, O. Aumant, L. Bopp, et al., “Two Decades of Ocean CO2 Sink and Variability,” Tellus B 55, 649–656 (2003).CrossRefGoogle Scholar
  19. 19.
    P. M. Cox, R. A. Betts, and C. D. Jones, et al., “Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model,” Nature 408, 184–187 (2000).CrossRefGoogle Scholar
  20. 20.
    V. Brovkin, J. Bendtsen, M. Claussen, et al., “Carbon Cycle, Vegetation, and Climate Dynamics in the Holocene: Experiments with the CLIMBER-2 Model,” Glob. Biogeochem. Cycles 16, 1139 (2002).CrossRefGoogle Scholar
  21. 21.
    V. Brovkin, S. Sitch, W. von Bloh, et al., “Role of Land Cover Changes for Atmospheric CO2 Increase and Climate Change During the Last 150 Years,” Glob. Change Biol. 10, 1253–1266 (2004).CrossRefGoogle Scholar
  22. 22.
    J.-L. Dufresne, P. Friedlingstein, M. Berthelot, et al., “On the Magnitude of Positive Feedback between Future Climate Change and the Carbon Cycle,” Geophys. Rev. Lett. 29, 1405 (2002).CrossRefGoogle Scholar
  23. 23.
    P. Friedlingstein, J.-L. Dufresne, P. M. Cox, and P. Rayner, “How Positive Is the Feedback between Climate Change and the Carbon Cycle?,” Tellus B 55, 692–700 (2003).CrossRefGoogle Scholar
  24. 24.
    C. D. Jones, P. M. Cox, R. L. H. Essery, et al., “Strong Carbon Cycle Feedbacks in a Climate Model with InteractiveCO2 and Sulphate Aerosols,” Geophys. Rev. Lett. 30, 1479 (2003).CrossRefGoogle Scholar
  25. 25.
    H. D. Matthews, A. J. Weaver, K. J. Meissner, et al., “Natural and Anthropogenic Climate Change: Incorporating Historical Land Cover Change, Vegetation Dynamics and the Global Carbon Cycle,” Clim. Dyn 22, 461–479 (2004).CrossRefGoogle Scholar
  26. 26.
    H. D. Matthews, A. J. Weaver, and K. J. Meissner, “Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change,” J. Clim. 18, 1609–1628 (2005).CrossRefGoogle Scholar
  27. 27.
    B. Govindasamy, S. Thompson, A. Mirin, et al., “Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a Coupled Climate and Carbon Cycle Model,” Tellus B 57, 153–163 (2005).CrossRefGoogle Scholar
  28. 28.
    G. Bala, K. Caldeira, A. Mirin, et al., “Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model,” J. Clim. 18, 4531–4544 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Sitch, V. Brovkin, W. von Bloh, et al., “Impacts of Future Land Cover Changes on Atmospheric CO2 and Climate,” Glob. Biogeochem. Cycles 19(2), GB2013 (2005).Google Scholar
  30. 30.
    P. Friedlingstein, P. Cox, R. Betts, et al., “Climate-Carbon Cycle Feedback Analysis, Results from the C4MIP Model Intercomparison,” J. Clim. 19, 3337–3353 (2006).CrossRefGoogle Scholar
  31. 31.
    I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “IAP RAS Global Climate Model with an Interactive Carbon Cycle: Sensitivity to Anthropogenic Forcing,” Dokl. Akad. Nauk 407, 400–404 (2006).Google Scholar
  32. 32.
    V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).Google Scholar
  33. 33.
    D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. D 104, 27253–27275 (1999).CrossRefGoogle Scholar
  34. 34.
    I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes During the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 629–642 (2002) [Izv., Atmos. Ocean. Phys. 38, 555–568 (2002)].Google Scholar
  35. 35.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn 25, 363–385 (2005).CrossRefGoogle Scholar
  36. 36.
    J. Lloyd and J. A. Taylor, “On the Temperature Dependence of Soil Respiration,” Func. Ecol. 8, 315–323 (1994).CrossRefGoogle Scholar
  37. 37.
    J. W. Raich and W. H. Schlesinger, “The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate,” Tellus B 44, 81–99 (1992).CrossRefGoogle Scholar
  38. 38.
    T. M. Lenton, “Land and Ocean Carbon Cycle Feedback Effects on Global Warming in a Simple Earth System Model,” Tellus B 52, 1159–1188 (2000).CrossRefGoogle Scholar
  39. 39.
    Yu. M. Svirezhev, L. L. Golubyatnikov, E. A. Denisenko, and V. A. Brovkin, “Model Approach to Estimating the Total Exchange Carbon Flux for Ecosystems in European Russia,” Zh. Obshch. Biol. 58(2), 5–14 (1997).Google Scholar
  40. 40.
    U. Siegenthaler and J. L. Sarmiento, “Atmospheric Carbon Dioxide and the Ocean,” Nature 365, 119–125 (1993).CrossRefGoogle Scholar
  41. 41.
    H. Thomas, M. H. England, and V. Ittekkot, “An Off-Line 3 D Model of Anthropogenic CO2 Uptake by the Oceans,” Geophys. Rev. Lett. 28, 547–550 (2001).CrossRefGoogle Scholar
  42. 42.
    G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge, 2005).Google Scholar
  43. 43.
    R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus B 55, 378–390 (2003).CrossRefGoogle Scholar
  44. 44.
    C. L. Sabine, R. A. Feely, N. Gruber, et al., “The Oceanic Sink for Anthropogenic CO2,” Science 305, 367–371 (2004).CrossRefGoogle Scholar
  45. 45.
    P. K. Patra, S. Maksyutov, M. Ishizawa, et al., “Interannual and Decadal Changes in the Sea-Air CO2 Flux from Atmospheric CO2 Inverse Modeling,” Glob. Biogeochem. Cycles 19(4), GB4013 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. V. Eliseev
    • 1
  • I. I. Mokhov
    • 1
  • A. A. Karpenko
    • 1
  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations