Skip to main content
Log in

Analysis of solutions to the inverse problem on the retrieval of the microstructure of stratospheric aerosol from satellite measurements

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A statistical ensemble of microphysical parameters of the background stratospheric aerosol at altitudes of 15 to 30 km is modeled on the basis of experimental data. The aerosol attenuation coefficients (AACs) in the wavelength range 0.38–16.3 μm are calculated for all realizations of the ensemble by algorithms of the Mie theory. Analysis of correlations between the AACs and the microphysical parameters indicate that the AAC correlates most strongly with the total volume V and area S of all particles. The errors of determining the microphysical parameters from AAC measurements are analyzed via the method of linear regression. It is shown that, if the AAC is measured with an error of 5%, the errors of determining both the particle size distribution (PSD) for particles with sizes of 0.4 to 4 μm and the parameter S are an order of magnitude smaller than the prior uncertainty, whereas the error of determining V is two orders of magnitude smaller than the prior uncertainty. Schemes of AAC measurements with the SAGE III, ISAMS, CLAES, HALOE instruments and an IR interferometer in the visible and IR regions are discussed. It is shown that combining the schemes makes it possible to extend the range of particle sizes for which the PSD is retrieved with a satisfactory accuracy and to increase the accuracy of determining S and V substantially and the accuracy of determining the total number of particles N opt to a lesser extent. Examples of interpreting AAC measurements carried out simultaneously with the SAGE III and HALOE instruments within the same spatial region are presented. A systematic discrepancy between vertical profiles of S and V obtained from SAGE III and HALOE measurements is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

    Google Scholar 

  2. T. Deshler, M. E. Hervig, D. J. Hofmann, et al., “Thirty Years of in situ Stratospheric Aerosol Size Distribution Measurements from Laramie, Wyoming (41° N), Using Balloon-Borne Instruments,” J. Geophys. Res. D 108, 4167, doi:10.1029/2002JD002514 (2003).

    Article  Google Scholar 

  3. M. P. McCormick and J. M. Zawodny, et al., “An Overview of SAGE I and II Ozone Measurements,” Planet. Space Sci. 37, 1567–1587 (1989).

    Article  Google Scholar 

  4. SAGE III ATVD Team, SAGE III Algorithm Theoretical Basis Document (ATBD) Transmission Level 1B Products LaRC 475-00-108, version 2.1 26, march 2002 (report at www-sage3.larc.nasa.gov).

  5. N. F. Elansky, G. M. Grechko, M. E. Plotkin, and O. V. Postylyakov, “The Ozone and Aerosol Fine Structure Experiment: Observing the Fine Structure of Ozone and Aerosol Distribution in the Atmosphere from the Salyut 7 Orbiter. 3. Experimental Results,” J. Geophys. Res. 96, 18 661–18 670 (1991).

    Google Scholar 

  6. J. D. Lumpe, R. M. Bevilacqua, K. W. Hoppel, et al., “POAM II Retrieval Algorithm and Error Analysis,” J. Geophys. Res. D 102, 23 593–23 614 (1997).

    Article  Google Scholar 

  7. A. V. Poberovskii, A. V. Polyakov, Yu. M. Timofeev, et al., “Ozone Profile Determination by Occultation Sounding from the Mir Space Station: 1. Instrumentation and Dta Processing Method,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35, 312–321 (1999) [Izv., Atmos. Ocean. Phys. 35, 282–290 (1999)].

    Google Scholar 

  8. A. V. Polyakov, Yu. M. Timofeev, A. V. Pobe-rovskii, and A. V. Vasil’ev, “Retrieval of Stratospheric Vertical Profiles of Aerosol Extinction Coefficients from the Ozon-Mir Measurements (Mir Space Station),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37, 213–222 (2001) [Izv., Atmos. Ocean. Phys. 37, 197–205 (2001)].

    Google Scholar 

  9. M. E. Hervig, III. J. M. Russell, L. L. Gordley, et al., “Observations of Aerosol by the HALOE Experiment Onboard UARS: A Preliminary Validation,” Geophys. Rev. Lett. 20, 1291–1294 (1993).

    Google Scholar 

  10. M. E. Hervig, T. Deshler, and J. M. Russell III, “Aerosol Size Distributions Obtained from HALOE Spectral Extinction Measurements,” J. Geophys. Res. D 103, 1573–1583 (1998).

    Article  Google Scholar 

  11. A. Eldering, B. H. Kahn, F. P. Mills, et al., “Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results,” J. Geophys. Res. D 109, 20 201, doi: 10.1029/2004JD004623 (2004).

    Article  Google Scholar 

  12. T. S. Massie and J. C. Gille, et al., “Validation Studies Using Multiwavelength Cryogenic Limb Array Etalon Spectrometer (CLAES) Observations of Stratospheric Aerosol,” J. Geophys. Res. D 101, 9757–9773 (1996).

    Article  Google Scholar 

  13. M. E. Hervig and T. Deshler, “Stratospheric Aerosol Surface Area and Volume Inferred from HALOE, CLAES, and ILAS Measurements,” J. Geophys. Res. D 103, 25 345–25 352 (1998).

    Google Scholar 

  14. B. N. Holben, T. F. Eck, I. Slutsker, et al., “AERONET—a Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sensing Environ. 66, 1–16 (1998).

    Article  Google Scholar 

  15. K. S. Shifrin and A. Ya. Perel’man, “Determination of the Spectrum of Particles of a Disperse System from the Data on Its Transparency,” Opt. Spektrosk. 20, 692–700 (1966).

    Google Scholar 

  16. K. S. Shifrin and A. Y. Perelman, “Calculation of Particle Distribution by the Data on the Spectral Transparency,” Pure Appl. Geophys. 58, 208–220 (1964).

    Article  Google Scholar 

  17. H. M. Steele and P. Hamill, “Effects of Temperature and Humidity on the Growth and Optical Properties of Sulphuric Acid-Water Droplets in the Stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).

    Article  Google Scholar 

  18. H. M. Steele, A. Eldering, B. Sen, et al., “Retrieval of Stratospheric Aerosol Size and Composition Information from Solar Infrared Transmission Spectra,” Appl. Opt. 42, 2140–2154 (2003).

    Google Scholar 

  19. R. G. Grainger, A. Lambert, C. D. Rodgers, et al., “Stratospheric Aerosol Effective Radius, Surface Area and Volume Estimated from Infrared Measurements,” J. Geophys. Res. D 100, 518 (1995).

    Article  Google Scholar 

  20. G. C. Toon, “The MKIV Interferometer,” Opt. Photonic News 2(10), 19–21 (1991).

    Article  Google Scholar 

  21. A. V. Polyakov, A. V. Vasil’ev, and Yu. M. Ti-mofeev, “Parametrization of the Spectral’ Dependence of the Aerosol Extinction Coefficient in Problems of Atmospheric Occultation Sounding from Space,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37, 646–657 (2001) [Izv., Atmos. Ocean. Phys. 37, 599–609 (2001)].

    Google Scholar 

  22. Yu. M. Timofeyev, A. V. Polyakov, H. M. Steele, and M. J. Newchurch, “Optimal Eigenanalysis for the Treatment of Aerosols in the Retrieval of Atmospheric Composition from Transmission Measurements,” Appl. Opt. 42, 2635–2646 (2003).

    Google Scholar 

  23. Ya. A. Virolainen, A. V. Polyakov, and Yu. M. Ti-mofeev, “Statistical Models for Tropospheric Aerosol,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 255–266 (2004) [Izv., Atmos. Ocean. Phys. 40, 216–226 (2004)].

    Google Scholar 

  24. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Modeling Polar Stratospheric Clouds (PSCs): I. Microphysical Characteristics,” Opt. Atmos. Okeana 18, 264–269 (2005).

    Google Scholar 

  25. H. Jager and D. J. Hofmann, “Midlatitude Lidar Backscatter to Mass, Area, and Extinction Conversion Model Based on in situ Aerosol Measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).

    Article  Google Scholar 

  26. T. Deshler, B. J. Johnson, and W. R. Rozier, “Balloon-borne Measurements of Pinatubo Aerosol during 1991 and 1992 at 41 N: Vertical Profiles, Size Distribution, and Volatility,” Geophys. Rev. Lett. 20, 1435–1438 (1993).

    Google Scholar 

  27. V. R. Oberbeck, E. F. Danielsen, K. G. Snet-singer, and G. V. Ferry, “Effect of the Eruption of El Chichon on Stratospheric Aerosol Size and Composition,” Geophys. Rev. Lett. 10, 1021–1024 (1983).

    Google Scholar 

  28. D. J. Hofmann and J. M. Rosen, “Time Variation of the Stratospheric Aerosol Size Distribution after the Eruption of El Chichon,” in Current Problems in Atmospheric Radiation, Ed. by G. Fiocco (Deepak, Hampton, 1984), pp. 111–114.

    Google Scholar 

  29. D. J. Hofmann and J. M. Rosen, “Balloon-Borne Observations of Stratospheric Aerosol and Condensation Nuclei during the Year Following the Mt. St. Helens Eruption,” J. Geophys. Res. 87, 11 039–11 061 (1982).

    Article  Google Scholar 

  30. P. B. Russell, T. J. Swissler, M. P. McCormic, et al., “Satellite and Correlative Measurements of the Stratospheric Aerosol, I, An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1279–1294 (1981).

    Article  Google Scholar 

  31. A. M. Chaika, Yu. M. Timofeev, A. V. Polyakov, and V. S. Kostsov, “Analysis of the Satellite Method of Determining the Microstructure of Stratospheric Aerosol,” Issled. Zemli Kosmosa, No. 2 (2006).

  32. G. P. Anderson, S. A. Clough, F. X. Kneizys, et al., “AFGL Atmospheric Constituent Profiles (0–120 km),” AFGL-TR-86-0110, Environmental Research Papers, No. 954 (1986).

  33. V. P. Kozlov, Selected Papers on the Theory of Experimental Design and Inverse Problems of Optical Sounding (St. Petersb. Gos. Univ., St. Petersburg, 2000) [in Russian].

    Google Scholar 

  34. S. T. Massie, D. Baumgardner, and J. E. Day, “Estimation of Polar Stratospheric Cloud Volume and Area Densities from UARS, Stratospheric Aerosol Measurement II, and Polar Ozone and Aerosol Measurement II Extinction Data,” J. Geophys. Res. D 103, 5773–5783 (1998).

    Article  Google Scholar 

  35. P. F. Bernath, “Atmospheric Chemistry Experiment (ACE): Mission Overview,” Proc. SPIE (SPIE, Bellingham, WA (2004) (paper at at www.ace.uwaterloo.ca).

    Google Scholar 

  36. G. K. Yue, M. P. McCormick, and W. P. Chu, “Retrieval of Composition and Size Distribution of Stratospheric Aerosols with the SAGE II Satellite Experiment,” J. Atmos. Oceanic Technol., No. 3, 371–380 (1986).

  37. H. M. Steele and R. P. Turco, “Retrieval of Aerosol Size Distributions from Satellite Extinction Spectra Using Constrained Linear Inversion,” J. Geophys. Res. D 102, 16 737–16 747 (1997).

    Google Scholar 

  38. M. Hervig and T. Deshler, “Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters,” J. Geophys. Res. D 107, 4031, doi: 10.1029/2001JD000703 (2002).

    Article  Google Scholar 

  39. C. E. Randall, R. M. Bevilacqua, J. D. Lumpe, and K. W. Hoppel, “Validation of POAM III Aerosols: Comparison to SAGE II and HALOE,” J. Geophys. Res. D 106, 27 525–27 536 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Ya.A. Virolainen, Yu.M. Timofeev, A.V. Polyakov, H. Steele, M. Newchurch, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 6, pp. 816–829.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virolainen, Y.A., Timofeev, Y.M., Polyakov, A.V. et al. Analysis of solutions to the inverse problem on the retrieval of the microstructure of stratospheric aerosol from satellite measurements. Izv. Atmos. Ocean. Phys. 42, 752–764 (2006). https://doi.org/10.1134/S0001433806060090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806060090

Keywords

Navigation