Skip to main content
Log in

Comparison between refraction angles measured in the Microlab-1 experiment and calculated on the basis of an atmospheric general circulation model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The differences between the refraction angles measured and calculated for the reanalyses of the European Centre for Medium-Range Weather Forecasts were statistically analyzed on the basis of 64 radio occultation events recorded by the Microlab-1 satellite. It is shown that, for minimum ray heights below 20 km, the main contribution to the differences is made by spatial refractive-index fluctuations neglected by the model. The power spectral density of these fluctuations is mainly concentrated within the vertical wave-number range 0.5–10 rad/km. For heights above 30 km, the deviations are mainly determined by ionospheric disturbances and may vary several times during changes of the site and time of observations. This suggests that the results of satellite radio-occultation sounding of the neutral atmosphere can be used as an indirect quantitative estimate of local discrepancies between the actual field of the refractive index and its values calculated on the basis of a hydrodynamic atmospheric general circulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ware, M. Exner, D. Feng, et al., “GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results,” Bull. Am. Meteorol. Soc. 77, 10–40 (1996).

    Article  Google Scholar 

  2. E. R. Kursinski, G. A. Hajj, S. S. Leroy, and B. Herman, “The GPS Radio Occultation Technique,” Terr. Atmos. Ocean. Sci. 11, 53–114 (2000).

    Google Scholar 

  3. C. Rocken, R. Anthes, M. Exner, et al., “Analysis and Validation of GPS/MET Data in the Neutral Atmosphere,” J. Geophys. Res. D 102, 29 849–29 866 (1997).

    Article  Google Scholar 

  4. K. Steiner, G. Kirchengast, and H. P. Lasreiter, “Inversion, Error Analysis, and Validation of GPS/MET Data,” Ann. Geophys. 17, 122–138 (1999).

    Article  Google Scholar 

  5. M. E. Gorbunov and L. Kornblueh, “Analysis and Validation of GPS/MET Radio Occultation Data,” J. Geophys. Res. D 106, 17-161–17-169 (2001).

    Article  Google Scholar 

  6. J. Wickert, C. Reigber, and G. Beyerle, “Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP,” Geophys. Rev. Lett. 28, 3263–3266 (2001).

    Article  Google Scholar 

  7. M. E. Gorbunov and L. Kornblueh, “Analysis and Validation of Challenging Minisatellite Payload (CHAMP) Radio Occultation Data,” J. Geophys. Res. D 108, 4584, doi: 10.1029/2002JD003175 (2003).

    Article  Google Scholar 

  8. M. E. Gorbunov, K. V. Lauritsen, A. Rodin, et al., “Analysis of the CHAMP Experimental Data on Radio-Occultation Sounding of the Earth’s Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 798–813 (2005) [Izv., Atmos. Ocean. Phys. 41, 726–740 (2005)].

    Google Scholar 

  9. V. V. Vorob’ev and T. G. Krasil’nikova, “Estimating the Accuracy of Retrieving the Atmospheric Refractive Index from Measurements of the Doppler Shift at the NAVSTAR Frequencies,” 29, 626–632 (1993).

    Google Scholar 

  10. S. Syndergaard, “On the Ionospheric Calibration in GPS Radio Occultation Measurements,” Radio Sci. 35, 865–883 (2000).

    Article  Google Scholar 

  11. M. E. Gorbunov, “Ionospheric Correction and Statistical Optimization of Radio Occultation Data,” Radio Sci. 37, 17-1–17-9, doi: 10.1029/2000RS002370 (2002).

    Google Scholar 

  12. V. V. Vorob’ev and V. Kan, “Background Fluctuations in the Ionosphere during GPS-Microlab-1 Radio-Occultation Experiment,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 511–523 (1999).

    Google Scholar 

  13. S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 Re-Analysis,” Q. J. R. Meteorol. Soc., No. 131, 2961–3012, doi: 10.1256/qj.04.176 (2005).

  14. M. E. Gorbunov, “Canonical Transform Method for Processing GPS Radio Occultation Data in Lower Troposphere,” Radio Sci. 37, 9-1–9-10, doi:10.1029/2000RS002592 (2002).

    Google Scholar 

  15. M. E. Gorbunov and K. B. Lauritsen, “Canonical Transform Methods for Radio Occultation Data,” Scientific Report No. 02-10 (Danish Meteorological Institute, Copenhagen, 2002); http://www.dmi.dk/dmi/Sr02-10.pdf.

    Google Scholar 

  16. A. S. Jensen, M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen, “Full Spectrum Inversion of Radio Occultation Signals,” Radio Sci. 38, 6-1–6-15, doi:10.1029/2002RS002763 (2003).

    Article  Google Scholar 

  17. M. E. Gorbunov, H.-H. Benzon, A. S. Jensen, et al., “Comparative Analysis of Radio Occultation Processing Approaches Based on Fourier Integral Operators,” Radio Sci. 39, 6004, doi: 10.1029/2003RS002916 (2004).

    Google Scholar 

  18. A. S. Jensen, M. S. Lohmann, A. S. Nielsen, and H.-H. Benzon, “Geometrical Optics Phase Matching of Radio Occultation Signals,” Radio Sci. 39, 3009, doi: 10.1029/2003RS002899 (2004).

    Article  Google Scholar 

  19. M. E. Gorbunov and K. B. Lauritsen, “Analysis of Wave Fields by Fourier Integral Operators and Its Application for Radio Occultations,” Radio Sci. 39, 4010, doi: 10.1029/2003RS002971 (2004).

    Google Scholar 

  20. M. E. Gorbunov, “Analysis of the Data of Radio-Occultation Sounding of the Earth’s Atmosphere with the Use of the Theory of Fourier Integral Operators,” Elektromagn. Volny Elektron. Sist., No. 9, 9–10 (2004).

  21. A. M. Yaglom, Correlation Theory of Stationary Random Functions (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  22. J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Mir, Moscow, 1983; Wiley, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Gurvich, M.E. Gorbunov, L. Kornblueh, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 6, pp. 771–777.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurvich, A.S., Gorbunov, M.E. & Kornblueh, L. Comparison between refraction angles measured in the Microlab-1 experiment and calculated on the basis of an atmospheric general circulation model. Izv. Atmos. Ocean. Phys. 42, 709–714 (2006). https://doi.org/10.1134/S0001433806060053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806060053

Keywords

Navigation