Skip to main content
Log in

Interrelation between the vegetation index and the climatic parameters and structural characteristics of vegetation cover

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The interrelations between the normalized difference vegetation index and the total incoming radiation; total evaporation; mean surface-air temperature over the vegetation period; and the structural characteristics of vegetation cover, such as its overground phytomass and overground net primary production, are analyzed on the basis of experimental and satellite data. The analysis was made with the use of the data obtained for plain regions of European Russia and western Siberia. It is shown that, for these regions, the latitudinal distributions of the values of the vegetation index and the structural vegetation-cover characteristics under consideration do not coincide. The relationships between the structural characteristics of vegetation cover (phytomass, production) and the vegetation index have the form of functions with saturation. The relationships between the vegetation index and the climatic parameters under consideration have a bell-shaped form. The analysis has shown that the normalized difference vegetation index is not an indicator for the values of the overground net primary production of vegetation cover and its overground phytomass within the areas under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Jorgensen and Y. M. Svirezhev, Towards a Thermodynamic Theory for Ecological Systems (Elsevier, Amsterdam, 2004).

    Google Scholar 

  2. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs et al., (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  3. L. L. Golubyatnikov, I. I. Mokhov, E. A. Denisenko, and V. A. Tikhonov, “Model Estimates of Climate Change Impact on the Vegetation Cover and Atmospheric Carbon Sink,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 25–35 (2005) [Izv., Atmos. Ocean. Phys. 41, 19–28 (2005)].

    Google Scholar 

  4. R. B. Myneni, F. G. Hall, P. J. Sellers, and A. L. Marshak, “The Interpretation of Spectral Vegetation Indexes,” IEEE Trans. Geosci. Remote Sensing 33, 481–486 (1995).

    Article  Google Scholar 

  5. Y. Yamagata, “Advanced Remote Sensing Techniques for Monitoring Complex Ecosystems: Spectral Indices, Unmixing, and Classification of Wetlands,” Tsukuba, NIES Report No. 141 (1999).

  6. I. Y. Fung and C. J. Turker, “Remote Sensing of the Terrestrial Biosphere,” in Climate-Vegetation Interactions, Ed. by C. Rosenzweig and R. Dickinson, UCAR, Report OIES-2, 135–139 (1986).

  7. R. B. Myneni, C. J. Turker, G. Asrar, and C. D. Keeling, “Interannual Variations in Satellite-Sensed Vegetation Index Data from 1981 to 1991,” J. Geophys. Res. D 103, 6145–6160 (1998).

    Article  Google Scholar 

  8. M. Kumar and J. L. Monteith, “Remote Sensing of Crop Growth,” in Plants and the Daylight Spectrum, Ed. by H. Smith (Academic, London, 1982), pp. 133–144.

    Google Scholar 

  9. P. J. Sellers, C. J. Turker, G. J. Collatz, et al., “A Global 1° by 1° NDVI Data Set for Climate Studies. Part 2: The Generation of Global Fields of Terrestrial Biophysical Parameters from the NDVI,” Int. J. Remote Sensing 15, 3519–3545 (1994).

    Google Scholar 

  10. S. D. Prince and S. N. Goward, “Global Primary Production: A Remote Sensing Approach,” J. Biogeogr. 22, 815–835 (1995).

    Article  Google Scholar 

  11. L. L. Golubyatnikov and E. A. Denisenko, “Modeling the Values of Net Primary Production for the Zonal Vegetation of European Russia,” Izv. Akad. Nauk, Ser. Biol., No. 3, 353–361 (2001) [Biology Bull. 28, 293–300 (2001)].

  12. S. N. Goward, B. Markhan, D. G. Dye, et al., “Normalized Difference Vegetation Index Measurements from the Advanced Very High Resolution Radiometer,” Remote Sensing Environ. 35, 257–277 (1991).

    Article  Google Scholar 

  13. C. L. Wiegand, A. J. Richardson, D. E. Escobar, and A. H. Gerbermann, “Vegetation Indexes in Crop Assessments,” Int. J. Remote Sensing 35, 105–119 (1991).

    Article  Google Scholar 

  14. S. J. Goetz, S. D. Prince, S. N. Goward, et al., “Mapping Net Primary Production and Related Biophysical Variables with Remote Sensing: Application to the BOREAS Region,” J. Geophys. Res. D 104, 27 719–27 734 (1999).

    Article  Google Scholar 

  15. F. Tao, M. Yokozawa, Z. Zhang, et al., “Remote Sensing of Crop Production in China by Production Efficiency Models: Models Comparisons, Estimates and Uncertainties,” Ecol. Model. 183, 385–396 (2005).

    Article  Google Scholar 

  16. D. B. Lobell, J. A. Hicke, G. P. Asner, et al., “Satellite Estimates of Productivity and Light Use Efficiency in United States Agriculture 1982–1998,” Global Chang. Biol. 8, 722–735 (2002).

    Article  Google Scholar 

  17. S. J. Goetz, S. D. Prince, S. N. Goward, et al., “Satellite Remote Sensing of Primary Production: An Improved Production Efficiency Modeling Approach,” Ecol. Model. 122, 239–255 (1999).

    Article  Google Scholar 

  18. C. B. Field, J. T. Randerson, and C. M. Malmstrom, “Global Net Primary Production: Combining Ecology and Remote Sensing,” Remote Sensing Environ. 51, 74–88 (1995).

    Article  Google Scholar 

  19. A. L. Schloss, D. W. Kicklighter, J. Kaduk, U. Wittenberg, and the Participants of the Potsdam NPP Model Intercomparison, “Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Comparison of NPP to Climate and Normalized Difference Vegetation Index (NDVI),” Global Chang. Biol. 5(Suppl. 1), 25–34 (1999).

    Article  Google Scholar 

  20. D. W. Kicklighter, A. Bondeau, A. L. Schloss, and the Participants of the Potsdam NPP Model Intercomparison, “Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Global Pattern and Differentiation by Major Biomes,” Global Chang. Biol. 5(Suppl. 1), 16–24 (1999).

    Article  Google Scholar 

  21. G. B. Benie, S. S. Kabore, K. Goita, and M.-F. Courel, “Remote Sensing-Based Spatio-Temporal Modeling to Predict Biomass in Sahelian Grazing Ecosystem,” Ecol. Model. 184, 341–354 (2005).

    Article  Google Scholar 

  22. F. Barett and G. Guyot, “Potentials and Limits of Vegetation Indices for LAI and APAR Assessment,” Remote Sensing Environ. 35, 161–173 (1991).

    Article  Google Scholar 

  23. B. A. M. Bouman, “Accuracy of Estimating the Leaf-Area Index from Vegetation Indexes Derived from Crop Reflectance Characteristics, a Simulation Study,” Int. J. Remote Sensing 13, 3069–3084 (1992).

    Google Scholar 

  24. Advances in Environmental Remote Sensing, Ed. by F. M. Danson and S. E. Plummer (Wiley, Chichester, 1995).

    Google Scholar 

  25. E. A. Denisenko and D. I. Lyuri, “Spatiotemporal Variability of the Leaf Index of Vegetation Cover,” Izv. Akad. Nauk, Ser. Geogr., No. 6, 41–51 (1994).

  26. L. L. Golubyatnikov and E. A. Denisenko, “Effect of the Productivity of Grass Ecosystems on the Underlying-Surface Albedo,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 636–644 (2003) [Izv., Atmos. Ocean. Phys. 39, 573–580 (2003).

    Google Scholar 

  27. R. V. Kaulakis, I. P. Lamsodene, and S. L. Pyatrauskas, “First Results of Remote Spectrometry of Grain Crops in Lithuania,” in Remote Sensing of the States of Geosystems (IG AN SSSR, Moscow, 1987), pp. 156–165 [in Russian].

    Google Scholar 

  28. A. J. Richardson and C. L. Wiegand, “Distinguishing Vegetation from Soil Background Information,” Photogram. Eng. Remote Sensing 43, 1541–1552 (1977).

    Google Scholar 

  29. J. R. Dymond, P. R. Stephens, P. F. Newsome, and R. H. Wilde, “Percentage Vegetation Cover of a Degrading Rangeland from SPOT,” Int. J. Remote Sensing 13, 1999–2007 (1992).

    Google Scholar 

  30. C. Leprieur, Y. H. Kerr, S. Mastorchio, and J. C. Meunier, “Monitoring Vegetation Cover across Semi-Arid Regions: Comparison of Remote Observations from Various Scales,” Int. J. Remote Sensing 2, 281–300 (2000).

    Article  Google Scholar 

  31. A. N. Zolotokrylin and V. V. Vinogradova, “Climatology of Draught on the Southeast of the Russian Plain from Satellite Data,” Issled. Zemli Kosmosa, No. 1, 83–89 (2003).

  32. DAAC. Distributed Active Archive Center, http://daac.nasa.gov/CAMPAIGNDOCS/FTPSITE.

  33. World Water Balance and Water Resources of the Earth (Gidrometeoizdat, Leningrad, 1974) [in Russian].

  34. M. New, M. Hulme, and P. Jones, “Representing Twentieth Century Space-Time Climate Variability. Part I: Development of a 1901–1990 Mean Monthly Terrestrial Climatology,” J. Clim. 12, 829–856 (1999).

    Article  Google Scholar 

  35. M. New, M. Hulme, and P. D. Jones, “Representing Twentieth Century Space-Time Climate Variability. Part II: Development of a 1901–1996 Monthly Grids of Terrestrial Surface Climate,” J. Clim. 13, 2217–2238 (2000).

    Article  Google Scholar 

  36. Z. I. Pivovarova and V. V. Stadnik, Climatic Characteristics of the Solar Radiation As a Source of Energy on the USSR Territory (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  37. N. I. Bazilevich, Biological Productivity of the Ecosystems of Northern Eurasia (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  38. V. A. Usol’tsev, Phytomass of the Forests of Northern Eurasia: Database and Geography (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  39. I. A. Shul’gin, Radiant Energy and Energy Balance of Plants (Al’teks, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.L. Golubyatnikov, E.A. Denisenko, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 4, pp. 524–538.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubyatnikov, L.L., Denisenko, E.A. Interrelation between the vegetation index and the climatic parameters and structural characteristics of vegetation cover. Izv. Atmos. Ocean. Phys. 42, 484–496 (2006). https://doi.org/10.1134/S0001433806040086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806040086

Keywords

Navigation