Skip to main content
Log in

Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A modified three-parameter model of turbulence for a thermally stratified atmospheric boundary layer (ABL) is presented. The model is based on tensor-invariant parametrizations for the pressure-strain and pressure-temperature correlations that are more complete than the parametrizations used in the Mellor-Yamada model of level 3.0. The turbulent momentum and heat fluxes are calculated with explicit algebraic models obtained with the aid of symbol algebra from the transport equations for momentum and heat fluxes in the approximation of weakly equilibrium turbulence. The turbulent transport of heat and momentum fluxes is assumed to be negligibly small in this approximation. The three-parameter E − ε − <ϑ2> model of thermally stratified turbulence is employed to obtain closed-form algebraic expressions for the fluxes. A computational test of a 24-h ABL evolution is implemented for an idealized two-dimensional region. Comparison of the computed results with the available observational data and other numerical models shows that the proposed model is able to reproduce both the most important structural features of the turbulence in an urban canopy layer near the urbanized ABL surface and the effect of urban roughness on a global structure of the fields of wind and temperature over a city. The results of the computational test for the new model indicate that the motion of air in the urban canopy layer is strongly influenced by mechanical factors (buildings) and thermal stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Roth, “Review of Atmospheric Turbulence over Cites,” Q. J. R. Meteorol. Soc. 126, 941–990 (2000).

    Article  Google Scholar 

  2. H. J. S. Fernando, S. M. Lee, J. Anderson, et al., “Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cites,” Environ. Fluid Mech. 1, 107–164 (2001).

    Article  Google Scholar 

  3. T. C. Vu, Y. Ashie, and T. Asaeda, “A Turbulence Closure Model for the Atmospheric Boundary Layer Including Urban Canopy,” Boundary-Layer Meteorol. 102, 459–490 (2002).

    Article  Google Scholar 

  4. B. E. Launder, “On the Effects of Gravitational Field on the Turbulent Transport of Heat and Momentum,” J. Fluid Mech. 67, 569–581 (1975).

    Article  Google Scholar 

  5. A. Martilli, “An Urban Exchange Parameterization for Mesoscale Models,” Boundary-Layer Meteorol. 104, 261–304 (2002).

    Article  Google Scholar 

  6. M. R. Raupach, R. A. Antonia, and S. Rajagoplan, “Rough-Wall Turbulent Boundary Layers,” Appl. Mech. Rev. 44, 79–90 (1991).

    Article  Google Scholar 

  7. A. F. Kurbatskii, “Computational Modeling of the Turbulent Penetrative Convection above the Urban Heat Island in a Stably Stratified Environment,” J. Appl. Meteorol. 40, 1748–1761 (2001).

    Article  Google Scholar 

  8. A. F. Kurbatskii and L. I. Kurbatskaya, “Penetrative Turbulent Convection over a Heat Island in a Stably Stratified Environment,” Izv. Akad. Nauk, Fiz. Atm. Okeana 37, 149–161 (2001) [Izv., Atmos. Ocean. Phys. 37, 135–146 (2001)].

    Google Scholar 

  9. A. N. Kolmogorov, “Equations of Turbulent Motion of an Incompressible Fluid,” Izv. Akad. Nauk SSSR, Ser. Fizicheskaya 6(1–2), 56–58 (1942).

    Google Scholar 

  10. G. L. Mellor and T. Yamada, “A Hierarchy of Turbulence Closure Models for Planetary Boundary Layer,” J. Atmos. Sci. 31, 1791–1806 (1974).

    Article  Google Scholar 

  11. G. L. Mellor and T. Yamada, “Development of a Turbulence Closure Model for Geophysical Fluid Problems,” Rev. Geophys. Space Phys. 20, 851–875 (1982).

    Google Scholar 

  12. Y. Cheng, V. M. Canuto, and A. M. Howard, “An Improved Model for the Turbulent PBL,” J. Atmos. Sci. 59, 1500–1565 (2002).

    Article  Google Scholar 

  13. O. Zeman and J. L. Lumley, “Buoyancy Effects in Entraining Turbulent Boundary Layers: A Second-Order Closure Study,” in Turbulent Shear Flows, Ed. by F. Durst et al. (Springer, Berlin, 1979), Vol. 1, pp. 295–302.

    Google Scholar 

  14. B. E. Launder, G. Reece, and W. Rodi, “Progress in the Development of a Reynolds-Stress Turbulent Closure,” J. Fluid Mech. 68, 537–566 (1975).

    Article  Google Scholar 

  15. B. E. Launder, in Simulation and Modeling of Turbulent Flows, Ed. by T. D. Gatski et al. (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  16. S. S. Girimaji and S. Balachandar, “Analysis and Modeling of Buoyancy-Generated Turbulence Using Numerical Data,” Int. J. Heat Mass Transfer 41, 915–929 (1998).

    Article  Google Scholar 

  17. T. P. Sommer and R. M. C. So, “On the Modeling of Homogeneous Turbulence in a Stably Stratified Flow,” Phys. Fluids 7, 2766–2777 (1995).

    Article  Google Scholar 

  18. A. Andren, “Evaluation of a Turbulence Closure Scheme for Air-Pollution Applications,” J. Appl. Meteorol. 29, 224–239 (1990).

    Article  Google Scholar 

  19. A. Andren, “A TKE-Dissipation Model for the Atmospheric Boundary Layer,” Boundary-Layer Meteorol. 56, 207–221 (1990).

    Article  Google Scholar 

  20. A. F. Kurbatskii and A. V. Kazakov, “Explicit Algebraic Model of Turbulent Heat Transfer for a Developed Flow in a Rotating Round Pipe,” Thermophys. Aeromech. 6, 231–240 (1999).

    Google Scholar 

  21. P. Roche, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976; Mir, Moscow, 1980).

    Google Scholar 

  22. M. W. Rotach, “Turbulence within and above an Urban Canopy,” ETH Dissertation, 9439 (1991).

  23. M. W. Rotach, “Turbulence Closure to a Rough Urban Surface. Part I: Reynolds Stress,” Boundary-Layer Meteorol. 65, 1–28 (1993).

    Article  Google Scholar 

  24. M. W. Rotach, “Turbulence Closure to a Rough Urban Surface. Part II,” Boundary-Layer Meteorol. 65, 1–28 (1993).

    Article  Google Scholar 

  25. M. W. Rotach, “Profiles of Turbulence Statistics in and above an Urban Street Canyon,” Atmos. Environ. 29, 1473–1486 (1995).

    Article  Google Scholar 

  26. S. Oikawa and Y. Meng, “Turbulence Characteristics and Organized Motion in a Suburban Roughness Sublayer,” Boundary-Layer Meteorol. 74, 289–312 (1995).

    Article  Google Scholar 

  27. C. Feigenwinter, The Vertical Structure of Turbulence above an Urban Canopy, PhD Thesis (Univ. of Basel, 1999).

  28. I. Uno and S. Wakamatsu, “Observed Structure of the Nocturnal Urban Boundary Layer and Its Evolution into a Convective Mixed Layer,” Atmos. Environ. B 26, 45–57 (1992).

    Article  Google Scholar 

  29. P. Louka, S. E. Belcher, and R. G. Harrison, “Coupling between Air Flow in Streets and the Well Developed Boundary Layer Aloft,” Atmos. Environ. 34, 2613–2621 (2000).

    Article  Google Scholar 

  30. A. M. Spanton and M. L. Williams, “A Comparison of the Structure of the Atmospheric Boundary Layers in Central London and a Rural/Suburban Site Using Acoustic Sounding,” Atmos. Environ. 22, 211–223 (1988).

    Article  Google Scholar 

  31. R. Bornstein and D. S. Johnson, “Urban-Rural Wind Velocity Differences,” Atmos. Environ. 11, 597–604 (1977).

    Article  Google Scholar 

  32. A. F. Kurbatskii, “Numerical Study of the Effect of a Surface Heat Spot on the Structure of the Planetary Boundary Layer,” Teplofiz. Aeromekh. 12(1), 41–60 (2005).

    Google Scholar 

  33. M. M. Gibson and B. E. Launder, “Ground Effects on Pressure Fluctuation in the Atmospheric Boundary Layer,” J. Fluid Mech. 86, 491–511 (1978).

    Article  Google Scholar 

  34. J. L. Lumley and P. Monsfield, “Second Order Modeling of Turbulent Transport in the Surface Mixed Layer,” Boundary-Layer Meteorol. 30, 109–142 (1984).

    Article  Google Scholar 

  35. M. R. Raupach, “Drag and Drag Partition on Rough Surfaces,” Boundary-Layer Meteorol. 60, 375–395 (1992).

    Article  Google Scholar 

  36. M. R. Raupach and R. H. Show, “Averaging Procedure for Flow within Vegetation Canopies,” Boundary-Layer Meteorol. 22, 79–90 (1982).

    Article  Google Scholar 

  37. H. Hiraoka, T. Maruyama, Y. Nakamura, and J. Katsura, “A Study on Modeling of Turbulent Flows within Plant and Urban Canopies. Formalization of Turbulence Model. Part 1,” J. Archit. Plann. Eng. 406, 1–9.

  38. T. Yamada and G. Mellor, “A Simulation of the Wangara Atmospheric Boundary Layer Data,” J. Atmos. Sci. 32, 2309–2329 (1975).

    Article  Google Scholar 

  39. J. C. Andre, G. De Moor, P. Lacarrere, et al., “Modeling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer,” J. Atmos. Sci. 35, 1861–1883 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Kurbatskii, L.I. Kurbatskaya, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 4, pp. 476–494.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbatskii, A.F., Kurbatskaya, L.I. Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface. Izv. Atmos. Ocean. Phys. 42, 439–455 (2006). https://doi.org/10.1134/S0001433806040049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806040049

Keywords

Navigation